967 resultados para nertial measurement unit
Resumo:
Objectives: To determine whether adjusting the denominator of the common hospital antibiotic use measurement unit (defined daily doses/100 bed-days) by including age-adjusted comorbidity score (100 bed-days/age-adjusted comorbidity score) would result in more accurate and meaningful assessment of hospital antibiotic use.
Methods: The association between the monthly sum of age-adjusted comorbidity and monthly antibiotic use was measured using time-series analysis (January 2008 to June 2012). For the purposes of conducting internal benchmarking, two antibiotic usage datasets were constructed, i.e. 2004-07 (first study period) and 2008-11 (second study period). Monthly antibiotic use was normalized per 100 bed-days and per 100 bed-days/age-adjusted comorbidity score.
Results: Results showed that antibiotic use had significant positive relationships with the sum of age-adjusted comorbidity score (P = 0.0004). The results also showed that there was a negative relationship between antibiotic use and (i) alcohol-based hand rub use (P = 0.0370) and (ii) clinical pharmacist activity (P = 0.0031). Normalizing antibiotic use per 100 bed-days contributed to a comparative usage rate of 1.31, i.e. the average antibiotic use during the second period was 31% higher than during the first period. However, normalizing antibiotic use per 100 bed-days per age-adjusted comorbidity score resulted in a comparative usage rate of 0.98, i.e. the average antibiotic use was 2% lower in the second study period. Importantly, the latter comparative usage rate is independent of differences in patient density and case mix characteristics between the two studied populations.
Conclusions: The proposed modified antibiotic measure provides an innovative approach to compare variations in antibiotic prescribing while taking account of patient case mix effects.
Resumo:
This paper presents the practical use of Prony Analysis to identify small signal oscillation mode parameters from simulated and actual phasor measurement unit (PMU) ringdown data. A well-known two-area four-machine power system was considered as a study case while the latest PMU ringdown data were collected from a double circuit 275 kV main interconnector on the Irish power system. The eigenvalue analysis and power spectral density were also conducted for the purpose of comparison. The capability of Prony Analysis to identify the mode parameters from three different types of simulated PMU ringdown data has been shown successfully. Furthermore, the results indicate that the Irish power system has dominant frequency modes at different frequencies. However, each mode has good system damping.
Resumo:
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Resumo:
The OpenPMU project is a platform for the development of Synchrophasor measurement technology, Phasor Measurement Units (PMU), in an open source manner. The project has now been operating for a number of years and has seen increased adoption at Universities and interest from electrical utilities. The OpenPMU device has recently been tested against the IEEE C37.118 standard and shown to operate within the specification. This paper discusses the OpenPMU project from the perspective of the past two years of experience and evaluates successes and opportunities for improvements in both the OpenPMU device and the philosophy of the design.
Resumo:
O presente trabalho pretende auxiliar o processo de consolidação do conceito de sustentabilidade no seio das organizações. Partindo de ferramentas de gestão e avaliação já existentes, esta tese sugere a sua integração numa única metodologia, ultrapassando desse modo as limitações e potenciando as suas capacidades enquanto ferramentas isoladas. O modelo proposto para o Sistema de Gestão da Sustentabilidade (SGS) integra assim: o conceito de melhoria contínua característico dos sistemas de gestão normalizados; a capacidade de tradução da perspetiva estratégica da gestão para o plano operacional, característica do Business Scorecard (BSC); e, por fim, a avaliação emergética é ainda utilizada como uma ferramenta de avaliação da sustentabilidade de sistemas. Um objetivo secundário desta tese prende-se com o desenvolvimento de um procedimento para a realização da análise emergética de um sistema. Depois de analisada a literatura referente à utilização da análise emergética, identificou-se como necessária a definição de um procedimento normalizado, adotando um conjunto de tarefas e um formato de apresentação de resultados que permita disseminar o conceito e tornar a ferramenta mais “utilizável”. Por outro lado, procurou-se dotar o procedimento com um conjunto de indicações que permitem ultrapassar limitações e inconvenientes apontados pelos críticos mas também utilizadores do método, nomeadamente: problemas de dupla contagem, cálculo da incerteza da análise e critérios de qualidade da informação utilizada. O modelo dos sistemas de gestão normalizados apresenta um papel central na metodologia proposta. O conceito de “melhoria contínua” afigura-se como fundamental num sistema que pretende implementar o conceito “desenvolvimento sustentável” e avaliar o seu desempenho à luz do mesmo. Assim, o ciclo Plan-Do-check-Act (PDCA) deve ser utilizado para implementar o SGS de acordo com uma Política para a Sustentabilidade que a organização deve desenvolver. Definida a Política, o modelo baseia-se então no ciclo PDCA: fase de planeamento; fase de implementação; fase de verificação; e fase de revisão. É na fase de planeamento do SGS que se sugere a introdução das outras duas ferramentas: a análise emergética (AEm) e o BSC. A fase de planeamento do modelo de SGS proposto neste trabalho foi aplicada à Universidade de Aveiro (UA), incluindo a definição de uma Política para a Sustentabilidade e o planeamento estratégico e operacional. A avaliação emergética à UA foi realizada recorrendo ao procedimento desenvolvido nesta tese e permitiu caracterizar e avaliar os fluxos de recursos que a “alimentam” sob uma só unidade, atribuindo deste modo graus de importância aos diferentes recursos utilizados. A informação representa 96% do total de recursos utilizados na UA, quando avaliados sob o ponto de vista emergética. Para além da informação, os fluxos financeiros representam a maior fatia do orçamento emergético da UA, grande parte dos quais serve para sustentar os serviços prestados pelo corpo docente da UA. Analisando valores históricos de 3 indicadores de desempenho emergético, observa-se que a UA não regista uma evolução positiva em nenhum dos indicadores: a emergia utilizada nos edifícios tem-se mantido mais ou menos constante; a retribuição emergética da UA para a sociedade, avaliada sobre a forma de diplomados, tem diminuído; e a relação emergética entre professores e alunos tem também diminuído, facto que pode refletir-se na qualidade dos “produtos” da UA. Da aplicação do SGS à UA regista-se: a adequabilidade do ciclo PDCA à implementação de um SGS; a capacidade da AEm “obrigar” a organização a adotar uma abordagem sistémica da sua atividade, resultando numa visão mais aprofundada da sua relação com o contexto ambiental, económico e social em que se insere; a importância da visão estratégica e da sua tradução em termos operacionais na fase de planeamento de um SGS; e, por fim, a capacidade de adaptação e dupla funcionalidade (implementação e avaliação) do modelo de SGS proposto. A metodologia de SGS proposta nesta tese, sendo direcionada para todo o tipo de organizações, não se desvirtua quando aplicada ao contexto específico das instituições de ensino superior e permite implementar e avaliar o conceito “desenvolvimento sustentável” nas quatro dimensões da universidade (Educação, Investigação, Operação; Relação com as partes interessadas).
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Near ground maneuvers, such as hover, approach and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground often using ultrasonic or laser range finders. Near ground maneuvers are naturally mastered by flying birds and insects as objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-to-contact (Tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for Unmanned Aerial Vehicles (UAV) relative ground distance control. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the Tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented on-board an experimental quadrotor UAV and shown not only to successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
Resumo:
An alternative and simplified procedure is described to estimate the longitudinal resistances of transmission lines based on the real-time load profile. This method proposes to estimate the resistance parameters from the synchronized measurements of complex currents and complex voltages at the sending and receiving ends of transmission systems. The synchronized measurements can be in practice obtained using phasor measurement units (PMUs). © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
Tracking activities during daily life and assessing movement parameters is essential for complementing the information gathered in confined environments such as clinical and physical activity laboratories for the assessment of mobility. Inertial measurement units (IMUs) are used as to monitor the motion of human movement for prolonged periods of time and without space limitations. The focus in this study was to provide a robust, low-cost and an unobtrusive solution for evaluating human motion using a single IMU. First part of the study focused on monitoring and classification of the daily life activities. A simple method that analyses the variations in signal was developed to distinguish two types of activity intervals: active and inactive. Neural classifier was used to classify active intervals; the angle with respect to gravity was used to classify inactive intervals. Second part of the study focused on extraction of gait parameters using a single inertial measurement unit (IMU) attached to the pelvis. Two complementary methods were proposed for gait parameters estimation. First method was a wavelet based method developed for the estimation of gait events. Second method was developed for estimating step and stride length during level walking using the estimations of the previous method. A special integration algorithm was extended to operate on each gait cycle using a specially designed Kalman filter. The developed methods were also applied on various scenarios. Activity monitoring method was used in a PRIN’07 project to assess the mobility levels of individuals living in a urban area. The same method was applied on volleyball players to analyze the fitness levels of them by monitoring their daily life activities. The methods proposed in these studies provided a simple, unobtrusive and low-cost solution for monitoring and assessing activities outside of controlled environments.
Resumo:
Despite several clinical tests that have been developed to qualitatively describe complex motor tasks by functional testing, these methods often depend on clinicians' interpretation, experience and training, which make the assessment results inconsistent, without the precision required to objectively assess the effect of the rehabilitative intervention. A more detailed characterization is required to fully capture the various aspects of motor control and performance during complex movements of lower and upper limbs. The need for cost-effective and clinically applicable instrumented tests would enable quantitative assessment of performance on a subject-specific basis, overcoming the limitations due to the lack of objectiveness related to individual judgment, and possibly disclosing subtle alterations that are not clearly visible to the observer. Postural motion measurements at additional locations, such as lower and upper limbs and trunk, may be necessary in order to obtain information about the inter-segmental coordination during different functional tests involved in clinical practice. With these considerations in mind, this Thesis aims: i) to suggest a novel quantitative assessment tool for the kinematics and dynamics evaluation of a multi-link kinematic chain during several functional motor tasks (i.e. squat, sit-to-stand, postural sway), using one single-axis accelerometer per segment, ii) to present a novel quantitative technique for the upper limb joint kinematics estimation, considering a 3-link kinematic chain during the Fugl-Meyer Motor Assessment and using one inertial measurement unit per segment. The suggested methods could have several positive feedbacks from clinical practice. The use of objective biomechanical measurements, provided by inertial sensor-based technique, may help clinicians to: i) objectively track changes in motor ability, ii) provide timely feedback about the effectiveness of administered rehabilitation interventions, iii) enable intervention strategies to be modified or changed if found to be ineffective, and iv) speed up the experimental sessions when several subjects are asked to perform different functional tests.