994 resultados para natural ventilation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the feasibility study on the application of passive and active stack systems to enhance natural ventilation in public housing in Singapore. About 86% of the population is staying in high-rise public housing, known as Housing and Development Board (HDB) flats, which is designed for natural ventilation. The primary objective of this work is to assess the status of natural ventilation in a typical four-room HDB flat using scaled model in the wind tunnel, and to develop an effective passive or active stack system to enhance natural ventilation in the flat. Four numbers of stacks with different sizes were tested at two locations in the flat. The study shows that the passive stack, incorporating the principle of airflow due to buoyancy, does not enhance air velocity in the flat. However, the active stack which operates based on the suction effect induced by a fan fixed at the top of the stack leads to substantial increase in the air velocity at the room and thus meeting the human’s thermal comfort condition. It was noted that the velocities increase along with the increase in the stack size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to IPCC (Intergovernmental Panel on Climate Change), the largest use of energy in commercial buildings is space heating in colder climates and air conditioning in hot climates. In Europe, the Directive on the energy performance of buildings EPBD (European Energy Performance of Buildings Directive) [1] provides a framework for national building performance regulations and calculation procedures. However, there are often large discrepancies between calculated and measured energy performance of buildings. One main reason is the behaviour of occupants, which is often not reflected in calculation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this research is to promote passive thermal design techniques in the construction of wineries. Natural ventilation in underground cellars is analyzed, focusing on the entrance tunnel, the ventilation chimney and the cave. A monitoring system was designed in order to detect changes in the indoor conditions and outdoor air infiltration. Monitoring process was carried out during one year. Results show the influence of outside temperature, ventilation chimney and access tunnel on the conditions inside the underground cellar. During hot periods, natural ventilation has a negligible influence on the indoor ambience, despite the permanently open vents in the door and chimney. The tunnel and ventilation chimney work as a temperature regulator, dampening outside fluctuations. Forced ventilation is necessary when a high air exchange ratio is needed. During cold periods, there is greater instability as a result of increased natural ventilation. The temperature differences along the tunnel are reduced, reflecting a homogenization and mixing of the air. The ventilation flow is sufficient to modify the temperature and relative humidity of the cave. Forced ventilation is not necessary in this period. During the intermediate periods --autumn and spring-- occurs different behaviors based on time of day.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indoor environmental conditions in classrooms, in particular temperature and indoor air quality, influence students’ health, attitude and performance. In recent years, several studies regarding indoor environmental quality of classrooms were published and natural ventilation proved to have great potential, particularly in southern European climate. This research aimed to evaluate indoor environmental conditions in eight schools and to assess their improvement potential by simple natural ventilation strategies. Temperature, relative humidity and carbon dioxide concentration were measured in 32 classrooms. Ventilation performance of the classrooms was characterized using two techniques, first by fan pressurization measurements of the envelope airtightness and later by tracer gas measurements of the air change rate assuming different envelope conditions. A total of 110 tracer gas measurements were made and the results validated ventilation protocols that were tested afterward. The results of the ventilation protocol implementation were encouraging and, overall, a decrease on the CO2 concentration was observed without modifying the comfort conditions. Nevertheless, additional measurements must be performed for winter conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

De nos jours, l'utilisation accrue de combustibles à base de fossiles et l'électricité met en péril l'environnement naturel à cause des niveaux élevés de pollution. Il est donc plausible de prévoir des économies d'énergie significatives grâce à la climatisation dite «naturelle»». En accord avec les objectifs acceptés à l'échelle internationale d'une architecture «verte» et durable, l'utilisation de cours intérieures associées aux capteurs de vent, aux murs-Trombe et à d'autres systèmes de climatisation naturelle (aussi bien traditionnels que nouveaux), paraît prometteuse. Ce mémoire propose une analyse de nouvelles approches à la climatisation naturelle et à la production d'air frais avec une consommation minimale d'énergie, eu égard aux traditions et aux tendances, en particulier dans les zones climatiques chaudes et sèches comme l'Iran. Dans ce contexte, regarder l'architecture de l'Islam et la discipline du Qur'an paraissent offrir un guide pour comprendre l'approche musulmane aux processus de décision en design. Nous regardons donc les traditions et les tendances en ce qui concerne la climatisation naturelle à travers l'élément le plus important du contexte islamique, à savoir le Qur'an. C'est pourquoi, à l'intérieur du thème de la tradition, nous avons pris en compte quelques considérations concernant l'influence de l'Islam, et en particulier le respect de la nature associé à un équilibre entre l'harmonie et l'individualité. Ce sont autant de facteurs qui influencent la prise de décisions visant à résoudre des problèmes scientifiques majeurs selon la philosophie et les méthodes islamiques ; ils nous permettent de faire quelques recommandations. La description des principes sous-jacents aux capteurs à vent et des antécédents trouvés dans la nature tels que les colonies de termites, est présentée également. Sous la rubrique tendances, nous avons introduit l'utilisation de matériaux et de principes de design nouveaux. Regarder simultanément ces matériaux nouveaux et l'analogie des colonies de termites suggère de bonnes approches à la conception d'abris pour les victimes de tremblements de terre dans les régions sisimques. Bam, une ville iranienne, peut être considérée comme un exemple spécifique illustrant où les principes exposés dans ce mémoire peuvent s'appliquer le plus adéquatement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spaces without northerly orientations have an impact on the ‘energy behaviour’ of a building. This paper outlines possible energy savings and better performance achieved by different zenithal solar passive strategies (skylights, roof monitors and clerestory roof windows) and element arrangements across the roof in zones of cold to temperate climates typical of the central and central-southern Argentina. Analyses were undertaken considering daylighting, thermal and ventilation performances of the different strategies. The results indicate that heating,ventilation and lighting loads in spaces without an equator-facing facade can be significantly reduced by implementing solar passive strategies. In the thermal aspect, the solar saving fraction reached for the different strategies were averaged 43.16% for clerestories, 41.4% for roof monitors and 38.86% for skylights for a glass area of 9% to the floor area. The results also indicate average illuminance levels above 500 lux for the different clerestory and monitor arrangements, uniformity ratios of 0.66–0.82 for the most distributed arrangements and day-lighting factors between 11.78 and 20.30% for clear sky conditions, depending on the strategy. In addition, minimum air changes rates of 4 were reached for the most extreme conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project, as part of a broader Sustainable Sub-divisions research agenda, addresses the role of natural ventilation in reducing the use of energy required to cool dwellings

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Australia’s current pattern of residential development is typified by relatively low-density subdivision of land and highlights the necessity for development to be more sustainable to avoid unnecessary demand on natural resources and to prevent environmental degradation and to safeguard the environment for future generations. What role can climatically appropriate sub-division design play in decreasing the use of energy required to cool premises by maximising access to natural ventilation? How can this design be achieved?

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the steady state natural ventilation of a room heated at the base and consisting of two vents at different levels. We explore how the air flow rate and internal temperature relative to the exterior vary as a function of the vent areas, position of the vents and heat load in order to establish appropriate ventilation strategies for a room. When the room is heated by a distributed source, the room becomes well mixed and the steady state ventilation rate depends on the heating rate, the area of the vents and the distance between the lower and upper level vents. However, when the room is heated by a localised source the room becomes stratified. If the effective ventilation area is sufficiently large, then the interface separating the two layers lies above the inlet vent and the lower layer is comprised of ambient fluid. In this case the upper layer is warmer than in the well mixed case and the ventilation rate is smaller. However, if the effective area for ventilation is sufficiently small, then the interface separating the two layers lies below the inlet vent and the lower layer is comprised of warm fluid which originates as the cold incoming fluid mixes during descent from the vent through the upper layer. In this case both the ventilation rate and the upper layer temperature are the same as in the case of a distributed heat load. As the vertical separation between lower and upper level vents decreases, then the temperature difference between the layers falls to zero and the room becomes approximately well mixed. These findings suggest how the appropriate ventilation strategy for a room can be varied depending on the exterior temperature, with mixing ventilation more suitable for winter conditions and displacement ventilation for warmer external temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of an opposing wind on the stratification and flow produced by a buoyant plume rising from a heat source on the floor of a ventilated enclosure is investigated. Ventilation openings located at high level on the windward side of the enclosure and at low level on the leeward side allow a wind-driven flow from high to low level, opposite to the buoyancy-driven flow. One of two stable steady flow regimes is established depending on a dimensionless parameter F that characterizes the relative magnitudes of the wind-driven and buoyancy-driven velocities within the enclosure, and on the time history of the flow. A third, unstable steady flow solution is identified. For small opposing winds (small F) a steady, two-layer stratification and displacement ventilation is established. Exterior fluid enters through the lower leeward openings and buoyant interior fluid leaves through the upper windward openings. As the wind speed increases, the opposing wind may cause a reversal in the flow direction. In this case, cool exterior fluid enters through the high windward openings and mixes the interior fluid, which exits through the leeward openings. There are now two possibilities. If the rate of heat input by the source exceeds the rate of heat loss through the leeward openings, the temperature of the interior increases and this flow reversal is only maintained temporarily. The buoyancy force increases with time, the flow reverts to its original direction, and steady two-layer displacement ventilation is re-established and maintained. In this regime, the increase in wind speed increases the depth and temperature of the warm upper layer, and reduces the ventilation flow rate. If, on the other hand, the heat loss exceeds the heat input, the interior cools and the buoyancy-driven flow decreases. The reversed flow is maintained, the stratification is destroyed and mixing ventilation occurs. Further increases in wind speed increase the ventilation rate and decrease the interior temperature. The transitions between the two ventilation flow patterns exhibit hysteresis. The change from displacement ventilation to mixing ventilation occurs at a higher F than the transition from mixing to displacement. Further, we find that the transition from mixing to displacement ventilation occurs at a fixed value of F, whereas the transition from displacement to mixing flow is dependent on the details of the time history of the flow and the geometry of the openings, and is not determined solely by the value of F. Theoretical models that predic t the steady stratification profiles and flow rates for the displacement and mixing ventilation, and the transitions between them, are presented and compared with measurements from laboratory experiments. The transition between these ventilation patterns completely changes the internal environment, and we discuss some of the implications for the natural ventilation of buildings. © 2004 Cambridge University Press.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effectiveness of ventilation flows is considered from the perspective of buoyancy (or heat) removal from a space. This perspective is distinct from the standard in which the effectiveness is based on the concentrations of a neutrally buoyant contaminant/passive tracer. Three new measures of effectiveness are proposed based on the ability of a flow to flush buoyancy from a ventilated space. These measures provide estimates of instantaneous and time-averaged effectiveness for the entire space, and local effectiveness at any height of interest. From a generalisation of the latter, a vertical profile of effectiveness is defined. These measures enable quantitative comparisons to be made between different flows and they are applicable when there is a difference in density (as is typical due to temperature differences) between the interior environment and the replacement air. Applications, therefore, include natural ventilation, hybrid ventilation and a range of forced ventilation flows. Finally, we demonstrate how the ventilation effectiveness of a room may be assessed from simple traces of temperature versus time. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transient natural ventilation of an enclosure through vents whose areas vary linearly with time is modelled theoretically. Both displacement and mixing flows are examined and analytical solutions developed. Predictions are presented for the ventilation of a typical office building and compared to existing constant vent area model predictions based on openings of the same average area. The predictions suggest that if the average vent areas are equal in the timedependent and constant area models, the overall time required to ventilate the enclosure is not affected. However, the rate at which heat is removed from the enclosure depends on the initial opening areas and the expansion rates/durations.