57 resultados para myonecrosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A myotoxic phospholipase A2, named bothropstoxin II (BthTX-II), was isolated from the venom of the South American snake Bothrops jararacussu and the pathogenesis of myonecrosis induced by this toxin was studied in mice. BthTX-II induced a rapid increase in plasma creatine kinase levels. Histological and ultrastructural observations demonstrate that this toxin affects muscle fibers by first disrupting the integrity of plasma membrane, as delta lesions were the earliest morphological alteration and since the plasma membrane was interrupted or absent in many portions. In agreement with this hypothesis, BthTX-II released peroxidase entrapped in negatively charged multilamellar liposomes and behaved as an amphiphilic protein in charge shift electrophoresis, an indication that its mechanism of action might be based on the interaction and disorganization of plasma membrane phospholipids. Membrane damage was followed by a complex series of morphological alterations in intracellular structures, most of which are probably related to an increase in cytosolic calcium levels. Myofilaments became hypercontracted into dense clumps which alternated with cellular spaces devoid of myofibrillar material. Later on, myofilaments changed to a hyaline appearance with a more uniform distribution. Mitochondria were drastically affected, showing high amplitude swelling, vesiculation of cristae, formation of flocculent densities, and membrane disruption. By 24 hr, abundant polymorphonuclear leucocytes and macrophages were observed in the interstitial space as well as inside necrotic fibers. Muscle regeneration proceeded normally, as abundant myotubes and regenerating myofibers were observed 7 days after BthTX-II injection. By 28 days regenerating fibers had a diameter similar to that of adult muscle fibers, although they presented two distinctive features: central location of nuclei and some fiber splitting. This good regenerative response may be explained by the observation that BthTX-II does not affect blood vessels, nerves, or basal laminae. © 1991.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genomic sequence of Clostridium chauvoei, the etiological agent of blackleg, a severe disease of ruminants with high mortality specified by a myonecrosis reveals a chromosome of 2.8 million base-pairs and a cryptic plasmid of 5.5 kilo base-pairs. The chromosome contains the main pathways like glycolysis/gluconeogenesis, sugar metabolism, purine and pyrimidine metabolisms, but the notable absence of genes of the citric acid cycle and deficient or partially deficient amino acid metabolism for Histidine, Tyrosine, Phenylalanine, and Tryptophan. These essential amino acids might be acquired from host tissue damage caused by various toxins and by protein metabolism that includes 57 genes for peptidases, and several ABC transporters for amino acids import.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present article we report on the biological characterization and amino acid sequence of a new basic Phospholipases A(2) (PLA(2)) isolated from the Crotalus durissus collilineatus venom (Cdcolli F6), which showed the presence of 122 amino acid residues with a pI value of 8.3, molecular mass of 14 kDa and revealed an amino acid sequence identity of 80% with crotalic PLA(2)s such as Mojave B, Cdt F15, and CROATOX. This homology, however, dropped to 50% if compared to other sources of PLA(2)s such as from the Bothrops snake venom. Also, this PLA(2) induced myonecrosis, although this effect was lower than that of BthTx-I or whole crotoxin and it was able to induce a strong blockage effect on the chick biventer neuromuscular preparation, independently of the presence of the acid subunid (crotapotin). The neurotoxic effect was strongly reduced by pre-incubation with heparin or with anhydrous acetic acid and rho-BPB showed a similar reduction. The rho-BPB did not reduce significantly the myotoxic activity induced by the PLA(2), but the anhydrous acetic acid treatment and the pre-incu-bation of PLA(2) with heparin reduced significantly its effects. This protein showed a strong antimicrobial activity against Xanthomonas axonopodis passiflorae (Gram-negative), which was drastically reduced by incubation of this PLA(2) with rho-BPB, but this effect was marginally reduced after treatment with anhydrous acetic acid. Our findings here allow to speculate that basic amino acid residues on the C-terminal and molecular regions near catalytic site regions such as Calcium binding loop or rho-wing region may be involved in the binding of this PLA(2) to the molecular receptor to induce the neurotoxic effect. The bactericidal effect, however, was completely dependent on the enzymatic activity of this protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low molecular weight fragments of sulfated galactans (Boc-5 and Boc-10) from the red algae Botryocladia occidentalis significantly inhibited Crotalus durissus cascavella sPLA2 enzymatic activity. Equimolar ratios of sPLA2 to Boc-5 or Boc-10 resulted in allosteric inhibition of sPLA2. Under the conditions tested, we observed that both Boc-5 and Boc-10 strongly decreased edema, myonecrosis, and neurotoxicity induced by native sPLA2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that ethyl 2-oxo-2H-chromene-3-carboxylate (EOCC), a synthetic coumarin, irreversibly inhibits phospholipase A(2) (sPLA2) from Crotalus durissus ruruima venom (sPLA2r) with an IC(50) of 3.1 +/- 0.06 nmol. EOCC strongly decreased the V(max) and K(m), and it virtually abolished the enzyme activity of sPLA2r as well as sPLA2s from other sources. The edema induced by 5PLA2r + EOCC was less than that induced by 5PLA2r treated with p-bromophenacyl bromide, which was more efficient at neutralizing the platelet aggregation activity of native 5PLA2r. Native 5PLA2r induced platelet aggregation of 91.54 +/- 9.3%, and sPLA2r +/- EOCC induced a platelet aggregation of 18.56 +/- 6.5%. EOCC treatment also decreased the myotoxic effect of sPLA2r. Mass spectrometry showed that EOCC formed a stable complex with sPLA2r, which increased the mass of native 5PLA2r from 14,299.34 da to 14,736.22 Da. Moreover, the formation of this complex appeared to be involved in the loss of 5PLA2r activity. Our results strongly suggest that EOCC can be used as a pharmacological agent against the 5PLA2 in Crotalus durissus sp. venom as well as other sPLA2s. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LY549-PLA(2)s myotoxins have attracted attention as models for the induction of myonecrosis by a catalytically independent mechanism of action. Structural studies and biological activities have demonstrated that the myotoxic activity of LYS49-PLA(2) is independent of the catalytic activity site. The myotoxic effect is conventionally thought to be to due to the C-terminal region 111-121, which plays an effective role in membrane damage. In the present study, Bn IV LYS49-PLA(2) was isolated from Bothrops neuwiedi snake venom in complex with myristic acid (CH3(CH2)(12)COOH) and its overall structure was refined at 2.2 angstrom resolution. The Bn IV crystals belong to monoclinic space group P2(1) and contain a dimer in the asymmetric unit. The unit cell parameters are a = 38.8, b = 70.4, c = 44.0 angstrom. The biological assembly is a "conventional dimer" and the results confirm that dimer formation is not relevant to the myotoxic activity. Electron density map analysis of the Bn IV structure shows clearly the presence of myristic acid in catalytic site. The relevant structural features for myotoxic activity are located in the C-terminal region and the Bn IV C-terminal residues NKKYRY are a probable heparin binding domain. These findings indicate that the mechanism of interaction between Bn IV and muscle cell membranes is through some kind of cell signal transduction mediated by heparin complexes. (C) 2010 Elsevier Masson SAS. All rights reserved.