946 resultados para mycobacterium
Resumo:
The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit-subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function.
Resumo:
The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria.
Resumo:
The RecA intein of Mycobacterium tuberculosis, a novel double-stranded DNA endonuclease, requires both Mn(2+) and ATP for efficient cleavage of the inteinless recA allele. In this study, we show that Mg(2+) alone was sufficient to stimulate PI-MtuI to cleave double-stranded DNA at ectopic sites. In the absence of Mg(2+), PI-MtuI formed complexes with topologically different forms of DNA containing ectopic recognition sequences with equal affinity but failed to cleave DNA. We observed that PI-MtuI was able to inflict double-strand breaks robustly within the ectopic recognition sequence to generate either a blunt end or 1-2-nucleotide 3'-hydroxyl overhangs. Mutational analyses of the presumptive metal ion-binding ligands (Asp(122), Asp(222), and Glu(220)) together with immunoprecipitation assays provided compelling evidence to link both the Mg(2+)- and Mn(2+) and ATP-dependent endonuclease activities to PI-MtuI. The kinetic mechanism of PI-MtuI promoted cleavage of ectopic DNA sites proceeded through a sequential mechanism with transient accumulation of nicked circular duplex DNA as an intermediate. Together, these data suggest that PI-MtuI, like group II introns, might mediate ectopic DNA transposition and hence its lateral transfer in natural populations.
Resumo:
To gain insights into inefficient allele exchange in mycobacteria, we compared homologous pairing and strand exchange reactions promoted by RecA protein of Mycobacterium tuberculosis to those of Escherichia coli RecA protein. The extent of single-stranded binding protein (SSB)-stimulated formation of joint molecules by MtRecA was similar to that of EcRecA over a wide range of pH values. In contrast, strand exchange promoted by MtRecA was inhibited around neutral pH due to the formation of DNA networks. At higher pH, MtRecA was able to overcome this constraint and, consequently, displayed optimal strand exchange activity. Order of addition experiments suggested that SSB, when added after MtRecA, was vital for strand exchange. Significantly, with shorter duplex DNA, MtRecA promoted efficient strand exchange without network formation in a pH-independent fashion. Increase in the length of duplex DNA led to incomplete strand exchange with concomitant rise in the formation of intermediates and networks in a pH-dependent manner. Treatment of purified networks with S1 nuclease liberated linear duplex DNA and products, consistent with a model in which the networks are formed by the invasion of hybrid DNA by the displaced linear single-stranded DNA. Titration of strand exchange reactions with ATP or salt distinguished a condition under which the formation of networks was blocked, but strand exchange was not significantly affected. We discuss how these results relate to inefficient allele exchange in mycobacteria.
Resumo:
Pathogenic mycobacteria have evolved unique strategies to survive within the hostile environment of macrophages. Modulation of key signaling cascades by NO, generated by the host during infection, assumes critical importance in overall cell-fate decisions. We show that NO is a critical factor in Mycobacterium bovis bacillus Calmette-Guérin-mediated Notch1 activation, as the generation of activated Notch1 or expression of Notch1 target genes matrix metalloproteinase-9 (MMP-9) or Hes1 was abrogated in macrophages derived from inducible NO synthase (iNOS) knockout (iNOS(-/-)), but not from wild-type, mice. Interestingly, expression of the Notch1 ligand Jagged1 was compromised in M. bovis bacillus Calmette-Guérin-stimulated iNOS(-/-) macrophages, and loss of Jagged1 expression or Notch1 signaling could be rescued by NO donors. Signaling perturbations or genetic approaches implicated that robust expression of MMP-9 or Hes1 required synergy and cross talk between TLR2 and canonical Notch1-PI3K cascade. Further, CSL/RBP-Jk contributed to TLR2-mediated expression of MMP-9 or Hes1. Correlative evidence shows that, in a murine model for CNS tuberculosis, this mechanism operates in vivo only in brains derived from WT but not from iNOS(-/-) mice. Importantly, we demonstrate the activation of Notch1 signaling in vivo in granulomatous lesions in the brains of Mycobacterium tuberculosis-infected human patients with tuberculous meningitis. Current investigation identifies NO as a pathological link that modulates direct cooperation of TLR2 with Notch1-PI3K signaling or Jagged1 to regulate specific components of TLR2 responses. These findings provide new insights into mechanisms by which Notch1, TLR2, and NO signals are integrated in a cross talk that modulates a defined set of effector functions in macrophages.
Resumo:
Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.
Resumo:
Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.
Resumo:
Alveolar macrophages form the first line of defense against inhaled droplets containing Mycobacterium tuberculosis by controlling mycobacterial growth and regulating T cell responses. CD4+ and gamma delta T cells, two major T cell subsets activated by M. tuberculosis, require accessory cells for activation. However, the ability of alveolar macrophages to function as accessory cells for T cell activation remains controversial. We sought to determine the ability of alveolar macrophages to serve as accessory cells for resting (HLA-DR-, IL-2R-) and activated (HLA-DR+, IL-2R+) gamma delta T cells in response to M. tuberculosis and its Ag, and to compare accessory cell function for gamma delta T cells of alveolar macrophages and blood monocytes obtained from the same donor. Alveolar macrophages were found to serve as accessory cells for both resting and activated gamma delta T cells in response to M. tuberculosis Ag. At high alveolar macrophage to T cell ratios (> 3:1), however, expansion of resting gamma delta T cells was inhibited by alveolar macrophages. The inhibition of resting gamma delta T cells by alveolar macrophages was dose-dependent, required their presence during the first 24 h, and was partially overcome by IL-2. Alveolar macrophages did not inhibit activated gamma delta T cells even at high accessory cell to T cell ratios, and alveolar macrophages functioned as well as monocytes as accessory cells. Monocytes were not inhibitory for either resting or activated gamma delta T cells. These findings support the following model. In the normal alveolus the alveolar macrophage to T cell ratio is > or = 9:1, and therefore the threshold for resting gamma delta T cell activation is likely to be high. Once a nonspecific inflammatory response occurs, such as after invasion by M. tuberculosis, this ratio is altered, favoring gamma delta T cell activation by alveolar macrophages.
Resumo:
CD4+ and gamma delta T cells are activated readily by Mycobacterium tuberculosis. To examine their role in the human immune response to M. tuberculosis, CD4+ and gamma delta T cells from healthy tuberculin-positive donor were studied for patterns of Ag recognition, cytotoxicity, and cytokine production in response to M. tuberculosis-infected mononuclear phagocytes. Both T cell subsets responded to intact M. tuberculosis and its cytosolic Ags. However, CD4+ and gamma delta T cells differed in the range of cytosolic Ags recognized: reactivity to a wide m.w. range of Ags for CD4+ T cells, and a restricted pattern for gamma delta T cells, with dominance of Ags of 10 to 15 kDa. Both T cell subsets were equally cytotoxic for M. tuberculosis-infected monocytes. Furthermore, both CD4+ and gamma delta T cells produced large amounts of IFN-gamma: mean pg/ml of IFN-gamma in supernatants was 2458 +/- 213 for CD4+ and 2349 +/- 245 for gamma delta T cells. By filter-spot ELISA (ELISPOT), the frequency of IFN-gamma-secreting gamma delta T cells was one-half of that of CD4+ T cells in response to M. tuberculosis, suggesting that gamma delta T cells on a per cell basis were more efficient producers of IFN-gamma than CD4+ T cells. In contrast, CD4+ T cells produced more IL-2 than gamma delta T cells, which correlated with diminished T cell proliferation of gamma delta T cells compared with CD4+ T cells. These results indicate that CD4+ and gamma delta T cell subsets have similar effector functions (cytotoxicity, IFN-gamma production) in response to M. tuberculosis-infected macrophages, despite differences in the Ags recognized, IL-2 production, and efficiency of IFN-gamma production.
Resumo:
Mycobacterial genomes are endowed with many eukaryote-like nucleotide cyclase genes encoding proteins that can synthesize 3',5'-cyclic AMP (cAMP). However, the roles of cAMP and the need for such redundancy in terms of adenylyl cyclase genes remain unknown. We measured cAMP levels in Mycobacterium smegmatis during growth and under various stress conditions and report the first biochemical and functional characterization of the MSMEG_3780 adenylyl cyclase, whose orthologs in Mycobacterium tuberculosis (Rv1647) and Mycobacterium leprae (ML1399) have been recently characterized in vitro. MSMEG_3780 was important for producing cAMP levels in the logarithmic phase of growth, since the {Delta}MSMEG_3780 strain showed lower intracellular cAMP levels at this stage of growth. cAMP levels decreased in wild-type M. smegmatis under conditions of acid stress but not in the {Delta}MSMEG_3780 strain. This was correlated with a reduction in MSMEG_3780 promoter activity, indicating that the effect of the reduction in cAMP levels on acid stress was caused by a decrease in the transcription of MSMEG_3780. Complementation of the {Delta}MSMEG_3780 strain with the genomic integration of MSMEG_3780 or the Rv1647 gene could restore cAMP levels during logarithmic growth. The Rv1647 promoter was also acid sensitive, emphasizing the biochemical and functional similarities in these two adenylyl cyclases. This study therefore represents the first detailed biochemical and functional analysis of an adenylyl cyclase that is important for maintaining cAMP levels in mycobacteria and underscores the subtle roles that these genes may play in the physiology of the organism.
Resumo:
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the ω subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc2155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.
Resumo:
A second DNA binding protein from stationary-phase cells of Mycobacterium smegmatis (MsDps2) has been identified from the bacterial genome. It was cloned, expressed and characterised and its crystal structure was determined. The core dodecameric structure of MsDps2 is the same as that of the Dps from the organism described earlier (MsDps1). However, MsDps2 possesses a long N-terminal tail instead of the C-terminal tail in MsDps1. This tail appears to be involved in DNA binding. It is also intimately involved in stabilizing the dodecamer. Partly on account of this factor, MsDps2 assembles straightway into the dodecamer, while MsDps1 does so on incubation after going through an intermediate trimeric stage. The ferroxidation centre is similar in the two proteins, while the pores leading to it exhibit some difference. The mode of sequestration of DNA in the crystalline array of molecules, as evidenced by the crystal structures, appears to be different in MsDps1 and MsDps2, highlighting the variability in the mode of Dps–DNA complexation. A sequence search led to the identification of 300 Dps molecules in bacteria with known genome sequences. Fifty bacteria contain two or more types of Dps molecules each, while 195 contain only one type. Some bacteria, notably some pathogenic ones, do not contain Dps. A sequence signature for Dps could also be derived from the analysis.
Resumo:
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosis and host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M.tuberculosis and, in particular, the proline-glutamic acid-polymorphicguanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappa B signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis. The Journal of Immunology, 2010, 184: 3495-3504.
Resumo:
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosismand host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M. tuberculosis and, in particular, the proline-glutamic acid-polymorphic guanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappa B signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis. The Journal of Immunology, 2010, 184: 3495-3504.