981 resultados para municipal solid waste management
Resumo:
Corrosion reduces the lifetime of municipal solid waste incineration (MSWI) superheater tubes more than any other cause. It can be minimized by the careful selection of those materials that are most resistant to corrosion under operating conditions. Since thousands of different materials are already known and many more are developed every year, here the selection methodology developed by Prof. Ashby of the University of Cambridge was used to evaluate the performance of different materials to be used as MSWI superheater tubes. The proposed materials can operate at steam pressures and temperatures over 40 bars and 400ºC, respectively. Two case studies are presented: one makes a balanced selection between mechanical properties and cost per thermal unit; and the other focuses on increasing tube lifetime. The balanced selection showed that AISI 410 martensitic stainless steel (wrought, hard tempered) is the best candidate with a good combination of corrosion resistance, a relatively low price (0.83-0.92 e/kg) and a good thermal conductivity (23-27 W/m K). Meanwhile, Nitronic 50/XM-19 stainless steel is the most promising candidate for longterm selection, as it presents high corrosion resistance with a relatively low price (4.86-5.14 e/kg) compared to Ni-alloys.
Resumo:
This thesis analyzed waste generation and waster disposal problems in municipalities and Cochin Corporation in Ernakulam district.Then the potential of resource recovery and recycling from biodegradable and non bio-degradable waste is established.The study further focused on the need for segregation of waste at the source as biodegradable and non biodegradable solid waste.The potential of resource recovery is explained in detail through the case study.The thesis also highlights the economically viable and environmental friendly methods o f treatment of waste.But the problem is that concerted and earnest attempts are lacking in making use of such methods.In spite of the health problems faced,people living near the dump sites are forced to stay there either because of their weak economic background or family ties.The study did not calculate the economic cost of health problems arising out of unscientific and irresponsible methods of waste disposal.
Resumo:
The rising pressure of Population, together with the constantly changing technologies, and development perspectives, contribute to the ever increasing volumes of wastes in different forms. The solid and liquid wastes generated in the urban areas were considered a burden to the society, and hazardous to the environment. The fact is that the growth of consumerist culture and aimless throwing of refuse by the people created the outbreak of environmental pollution. Unhygienic environment and solid waste accumulation coincided with mosquito breeding which causes, the spread of most epidemics. The rationale behind most of the diseases is the unhygienic pattern followed by the people both in rural and urban areas. As an environmental package, the disposal of solid waste from different sources, such as house holds markets, commercial areas, slaughter houses, hospitals and industries, therefore assumed crucial importance. So as a part of the theory and practice, a study on the area, solid waste management of Arppukara Grama Panchayat of Kottayam district is taken into consideration. The study conducted here proposes, to examine the quality and quantity of the solid waste generated in the panchayat and also it's impact on the existing social, economical, environmental and ecological systems
Resumo:
Kochi, the commercial capital of Kerala, South India and second most important city next to Mumbai on the Western coast is a land having a wide variety of residential environments. Due to rapid population growth, changing lifestyles, food habits and living standards, institutional weaknesses, improper choice of technology and public apathy, the present pattern of the city can be classified as that of haphazard growth with typical problems characteristics of unplanned urban development especially in the case of solid waste management. To have a better living condition for us and our future generations, we must know where we are now and how far we need to go. We, each individual must calculate how much nature we use and compare it to how much nature we have available. This can be achieved by applying the concept of ecological footprint. Ecological footprint analysis (EFA) is a quantitative tool that represents the ecological load imposed on earth by humans in spatial terms. The aim of applying EFA to Kochi city is to quantify the consumption and waste generation of a population and to compare it with the existing biocapacity. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. The paper discusses the various footprint components of Kochi city and in detail analyses the waste footprint of the residential areas using waste footprint analyzer. An attempt is also made to suggest some waste foot print reduction strategies thereby making the city sustainable as far as solid waste management is concerned.
Resumo:
Trace element contamination is one of the main problems linked to the quality of compost, especially when it is produced from urban wastes, which can lead to high levels of some potentially toxic elements such as Cu, Pb or Zn. In this work, the distribution and bioavailability of five elements (Cu, Zn, Pb, Cr and Ni) were studied in five Spanish composts obtained from different feedstocks (municipal solid waste, garden trimmings, sewage sludge and mixed manure). The five composts showed high total concentrations of these elements, which in some cases limited their commercialization due to legal imperatives. First, a physical fractionation of the composts was performed, and the five elements were determined in each size fraction. Their availability was assessed by several methods of extraction (water, CaCl2–DTPA, the PBET extract, the TCLP extract, and sodium pyrophosphate), and their chemical distribution was assessed using the BCR sequential extraction procedure. The results showed that the finer fractions were enriched with the elements studied, and that Cu, Pb and Zn were the most potentially problematic ones, due to both their high total concentrations and availability. The partition into the BCR fractions was different for each element, but the differences between composts were scarce. Pb was evenly distributed among the four fractions defined in the BCR (soluble, oxidizable, reducible and residual); Cu was mainly found in the oxidizable fraction, linked to organic matter, and Zn was mainly associated to the reducible fraction (iron oxides), while Ni and Cr were mainly present almost exclusively in the residual fraction. It was not possible to establish a univocal relation between trace elements availability and their BCR fractionation. Given the differences existing for the availability and distribution of these elements, which not always were related to their total concentrations, we think that legal limits should consider availability, in order to achieve a more realistic assessment of the risks linked to compost use.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different geoenvironmental site investigation techniques to assess contamination from a municipal solid waste disposal site in Brazil are presented here. Superficial geophysical investigation (geoelectrical survey), resistivity piezocone penetration tests (RCPTU), soil samples collected with direct-push samplers and water samples collected from monitoring wells were applied in this study. The application of the geoelectrical method was indispensable to identify the presence and flow direction of contamination plumes (leachate) as well as to indicate the most suitable locations for RCPTU tests and soil and water sampling. Chemical analyses of groundwater samples contributed to a better understanding of the flow of the contaminated plume. The piezocone presented some limitations for tropical soils, since the groundwater level is sometimes deeper than the layer which is impenetrable to the cone, and the soil genesis and unsaturated conditions affect soil behavior. The combined interpretation of geoelectrical measurements and soil and water samplings underpinned the interpretation of RCPTU tests. The interpretation of all the test results indicates that the contamination plume has already overreached the landfill's west-northwest borders. Geoenvironmental laboratory test results suggest that contamination from the solid waste disposal site has been developing gradually, indicating the need for continuous monitoring of the groundwater.
Resumo:
Energy generation is needed in São Paulo and MSW represents a promising alternative, although it is more expensive than hydroelectric power. About 14 900 t/day of MSW is generated, of which 8433 t/day is domestic and commercial MSW. From this amount, 1800 t will be destined to generate 30 MW of power. The eco-balance of CO2 has been considered for incineration and recycling. The recycling program of plastics, metals, paper and glass would represent a significant reduction in energy and CO2 emission. The total CO2 released is 3.34 x 10(5) t/yr without recycling. and is 1.25 x 10(5) t/yr with a recycling program. Most of the CO2 comes from plastics and paper production. Economic aspects could probably favor Incineration with energy production as the best option. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
A simple and efficient method for the simultaneous gas chromatographic determination of ten organochlorine pesticides (alpha-HCH, beta-HCH, gamma-HCH, p,p'-DDT, o,p'-DDT, p,p'-DDD, p,p'-DDE, aldrin, endrin, and dieldrin) and six congeners of PCBs (PCB 28, 52, 118, 138, 153, and 180) in municipal solid waste compost is described. The procedure involves a solid-phase dispersion matrix using celite as dispersant sorbent, alumina as clean up sorbent and hexane-dichloromethane (7:3, v/v) mixture as eluting solvent. An additional purification step with copper was necessary to eliminate sulphur. Analysis of the sample was performed by GC-ECD. The method was validated with fortified samples at two concentration levels (0.025 and 0.05 mg kg(-1)). Average recovery ranged from 77 to 121% with relative standard deviation between 1 and 18%. The detection limits, which ranged from 0.003 to 0.01 mg kg-1, were lower than those established by the Baden-Wurttemberg directive (0.033 mg kg(-1)).
Resumo:
Persistent organic pollutants (POPs), organochlorine pesticides and polychlorinated biphenyls (PCBs), listed as per the Stockholm Convention (α -HCH, β -HCH, γ -HCH, p,p′-DDT, o,p′-DDT, p,p′-DDD, p,p′-DDE, aldrin, endrin, dieldrin, PCBs 28, 52, 118, 138, 153, and 180), were analyzed in municipal solid waste (MSW) compost samples from three different Brazilian composting plants located in three São Paulo State cities: Araras, Araraquara and São Paulo (Vila Leopoldinha). Quantitative and qualitative analyses were carried out using gas chromatography electron capture detection (GC-ECD) and gas chromatography mass spectrometry (GC-MS) (Ion Trap, electron impact ionization), respectively. The samples were analyzed in triplicate and the target POPs were not detected by GC-ECD. Twelve pollutants were identified in two samples when qualitative analysis (GC-MS) was used (β -HCH, γ -HCH, p,p′-DDT, o,p′-DDT, p,p′-DDD, and p,p′-DDE, PCBs 28, 118, 138, 153 and 180). The composting process has advantages such as urban solid waste reduction and landfill life-span increase, however the MSW compost quality, which can be utilized for agricultural purposes, should be evaluated and be controlled. This kind of study is the first step in making available information to answer questions regarding MSW compost for sustainable agricultural use, such as the pollutants accumulation in soil and in groundwater, and plants uptake. Copyright © Taylor & Francis Group, LLC.
Resumo:
The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVs) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 1 capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper provides a broad overview of recent trends in solid waste and recycling, related public policy issues, and the economics literature devoted to these topics. Public attention to solid waste and recycling has increased dramatically over the past decade both in the United States and in Europe. In response, economists have developed models to help policy makers choose the efficient mix of policy levers to regulate solid waste and recycling activities. Economists have also employed different kinds of data to estimate the factors that contribute to the generation of residential solid waste and recycling and to estimate the effectiveness of many of the policy options employed.