956 resultados para multinomial logit model
Resumo:
Motorcycles are particularly vulnerable in right-angle crashes at signalized intersections. The objective of this study is to explore how variations in roadway characteristics, environmental factors, traffic factors, maneuver types, human factors as well as driver demographics influence the right-angle crash vulnerability of motorcycles at intersections. The problem is modeled using a mixed logit model with a binary choice category formulation to differentiate how an at-fault vehicle collides with a not-at-fault motorcycle in comparison to other collision types. The mixed logit formulation allows randomness in the parameters and hence takes into account the underlying heterogeneities potentially inherent in driver behavior, and other unobserved variables. A likelihood ratio test reveals that the mixed logit model is indeed better than the standard logit model. Night time riding shows a positive association with the vulnerability of motorcyclists. Moreover, motorcyclists are particularly vulnerable on single lane roads, on the curb and median lanes of multi-lane roads, and on one-way and two-way road type relative to divided-highway. Drivers who deliberately run red light as well as those who are careless towards motorcyclists especially when making turns at intersections increase the vulnerability of motorcyclists. Drivers appear more restrained when there is a passenger onboard and this has decreased the crash potential with motorcyclists. The presence of red light cameras also significantly decreases right-angle crash vulnerabilities of motorcyclists. The findings of this study would be helpful in developing more targeted countermeasures for traffic enforcement, driver/rider training and/or education, safety awareness programs to reduce the vulnerability of motorcyclists.
Resumo:
Despite its potential multiple contributions to sustainable policy objectives, urban transit is generally not widely used by the public in terms of its market share compared to that of automobiles, particularly in affluent societies with low-density urban forms like Australia. Transit service providers need to attract more people to transit by improving transit quality of service. The key to cost-effective transit service improvements lies in accurate evaluation of policy proposals by taking into account their impacts on transit users. If transit providers knew what is more or less important to their customers, they could focus their efforts on optimising customer-oriented service. Policy interventions could also be specified to influence transit users’ travel decisions, with targets of customer satisfaction and broader community welfare. This significance motivates the research into the relationship between urban transit quality of service and its user perception as well as behaviour. This research focused on two dimensions of transit user’s travel behaviour: route choice and access arrival time choice. The study area chosen was a busy urban transit corridor linking Brisbane central business district (CBD) and the St. Lucia campus of The University of Queensland (UQ). This multi-system corridor provided a ‘natural experiment’ for transit users between the CBD and UQ, as they can choose between busway 109 (with grade-separate exclusive right-of-way), ordinary on-street bus 412, and linear fast ferry CityCat on the Brisbane River. The population of interest was set as the attendees to UQ, who travelled from the CBD or from a suburb via the CBD. Two waves of internet-based self-completion questionnaire surveys were conducted to collect data on sampled passengers’ perception of transit service quality and behaviour of using public transit in the study area. The first wave survey is to collect behaviour and attitude data on respondents’ daily transit usage and their direct rating of importance on factors of route-level transit quality of service. A series of statistical analyses is conducted to examine the relationships between transit users’ travel and personal characteristics and their transit usage characteristics. A factor-cluster segmentation procedure is applied to respodents’ importance ratings on service quality variables regarding transit route preference to explore users’ various perspectives to transit quality of service. Based on the perceptions of service quality collected from the second wave survey, a series of quality criteria of the transit routes under study was quantitatively measured, particularly, the travel time reliability in terms of schedule adherence. It was proved that mixed traffic conditions and peak-period effects can affect transit service reliability. Multinomial logit models of transit user’s route choice were estimated using route-level service quality perceptions collected in the second wave survey. Relative importance of service quality factors were derived from choice model’s significant parameter estimates, such as access and egress times, seat availability, and busway system. Interpretations of the parameter estimates were conducted, particularly the equivalent in-vehicle time of access and egress times, and busway in-vehicle time. Market segmentation by trip origin was applied to investigate the difference in magnitude between the parameter estimates of access and egress times. The significant costs of transfer in transit trips were highlighted. These importance ratios were applied back to quality perceptions collected as RP data to compare the satisfaction levels between the service attributes and to generate an action relevance matrix to prioritise attributes for quality improvement. An empirical study on the relationship between average passenger waiting time and transit service characteristics was performed using the service quality perceived. Passenger arrivals for services with long headways (over 15 minutes) were found to be obviously coordinated with scheduled departure times of transit vehicles in order to reduce waiting time. This drove further investigations and modelling innovations in passenger’ access arrival time choice and its relationships with transit service characteristics and average passenger waiting time. Specifically, original contributions were made in formulation of expected waiting time, analysis of the risk-aversion attitude to missing desired service run in the passengers’ access time arrivals’ choice, and extensions of the utility function specification for modelling passenger access arrival distribution, by using complicated expected utility forms and non-linear probability weighting to explicitly accommodate the risk of missing an intended service and passenger’s risk-aversion attitude. Discussions on this research’s contributions to knowledge, its limitations, and recommendations for future research are provided at the concluding section of this thesis.
Resumo:
Numerous initiatives have been employed around the world in order to address rising greenhouse gas (GHG) emissions originating from the transport sector. These measures include: travel demand management (congestion‐charging), increased fuel taxes, alternative fuel subsidies and low‐emission vehicle (LEV) rebates. Incentivizing the purchase of LEVs has been one of the more prevalent approaches in attempting to tackle this global issue. LEVs, whilst having the advantage of lower emissions and, in some cases, more efficient fuel consumption, also bring the downsides of increased purchase cost, reduced convenience of vehicle fuelling, and operational uncertainty. To stimulate demand in the face of these challenges, various incentive‐based policies, such as toll exemptions, have been used by national and local governments to encourage the purchase of these types of vehicles. In order to address rising GHG emissions in Stockholm, and in line with the Swedish Government’s ambition to operate a fossil free fleet by 2030, a number of policies were implemented targeting the transport sector. Foremost amongst these was the combination of a congestion charge – initiated to discourage emissions‐intensive travel – and an exemption from this charge for some LEVs, established to encourage a transition towards a ‘green’ vehicle fleet. Although both policies shared the aim of reducing GHG emissions, the exemption for LEVs carried the risk of diminishing the effectiveness of the congestion charging scheme. As the number of vehicle owners choosing to transition to an eligible LEV increased, the congestion‐reduction effectiveness of the charging scheme weakened. In fact, policy makers quickly recognized this potential issue and consequently phased out the LEV exemption less than 18 months after its introduction (1). Several studies have investigated the demand for LEVs through stated‐preference (SP) surveys across multiple countries, including: Denmark (2), Germany (3, 4), UK (5), Canada (6), USA (7, 8) and Australia (9). Although each of these studies differed in approach, all involved SP surveys where differing characteristics between various types of vehicles, including LEVs, were presented to respondents and these respondents in turn made hypothetical decisions about which vehicle they would be most likely to purchase. Although these studies revealed a number of interesting findings in regards to the potential demand for LEVs, they relied on SP data. In contrast, this paper employs an approach where LEV choice is modelled by taking a retrospective view and by using revealed preference (RP) data. By examining the revealed preferences of vehicle owners in Stockholm, this study overcomes one of the principal limitations of SP data, namely that stated preferences may not in fact reflect individuals’ actual choices, such as when cost, time, and inconvenience factors are real rather than hypothetical. This paper’s RP approach involves modelling the characteristics of individuals who purchased new LEVs, whilst estimating the effect of the congestion charging exemption upon choice probabilities and subsequent aggregate demand. The paper contributes to the current literature by examining the effectiveness of a toll exemption under revealed preference conditions, and by assessing the total effect of the policy based on key indicators for policy makers, including: vehicle owner home location, commuting patterns, number of children, age, gender and income. Extended Abstract Submission for Kuhmo Nectar Conference 2014 2 The two main research questions motivating this study were: Which individuals chose to purchase a new LEV in Stockholm in 2008?; and, How did the congestion charging exemption affect the aggregate demand for new LEVs in Stockholm in 2008? In order to answer these research questions the analysis was split into two stages. Firstly, a multinomial logit (MNL) model was used to identify which demographic characteristics were most significantly related to the purchase of an LEV over a conventional vehicle. The three most significant variables were found to be: intra‐cordon residency (positive); commuting across the cordon (positive); and distance of residence from the cordon (negative). In order to estimate the effect of the exemption policy on vehicle purchase choice, the model included variables to control for geographic differences in preferences, based on the location of the vehicle owners’ homes and workplaces in relation to the congestion‐charging cordon boundary. These variables included one indicator representing commutes across the cordon and another indicator representing intra‐cordon residency. The effect of the exemption policy on the probability of purchasing LEVs was estimated in the second stage of the analysis by focusing on the groups of vehicle owners that were most likely to have been affected by the policy i.e. those commuting across the cordon boundary (in both directions). Given the inclusion of the indicator variable representing commutes across the cordon, it is assumed that the estimated coefficient of this variable captures the effect of the exemption policy on the utility of choosing to purchase an exempt LEV for these two groups of vehicle owners. The intra‐cordon residency indicator variable also controls for differences between the two groups, based upon direction of travel across the cordon boundary. A counter‐hypothesis to this assumption is that the coefficient of the variable representing commuting across the cordon boundary instead only captures geo‐demographic differences that lead to variations in LEV ownership across the different groups of vehicle owners in relation to the cordon boundary. In order to address this counter‐hypothesis, an additional analysis was performed on data from a city with a similar geodemographic pattern to Stockholm, Gothenburg ‐ Sweden’s second largest city. The results of this analysis provided evidence to support the argument that the coefficient of the variable representing commutes across the cordon was capturing the effect of the exemption policy. Based upon this framework, the predicted vehicle type shares were calculated using the estimated coefficients of the MNL model and compared with predicted vehicle type shares from a simulated scenario where the exemption policy was inactive. This simulated scenario was constructed by setting the coefficient for the variable representing commutes across the cordon boundary to zero for all observations to remove the utility benefit of the exemption policy. Overall, the procedure of this second stage of the analysis led to results showing that the exemption had a substantial effect upon the probability of purchasing and aggregate demand for exempt LEVs in Stockholm during 2008. By making use of unique evidence of revealed preferences of LEV owners, this study identifies the common characteristics of new LEV owners and estimates the effect of Stockholm's congestion charging exemption upon the demand for new LEVs during 2008. It was found that the variables that had the greatest effect upon the choice of purchasing an exempt LEV included intra‐cordon residency (positive), distance of home from the cordon (negative), and commuting across the cordon (positive). It was also determined that owners under the age of 30 years preferred non‐exempt LEVs (low CO2 LEVs), whilst those over the age of 30 years preferred electric vehicles. In terms of electric vehicles, it was apparent that those individuals living within the city had the highest propensity towards purchasing this vehicle type. A negative relationship between choosing an electric vehicle and the distance of an individuals’ residency from the cordon was also evident. Overall, the congestion charging exemption was found to have increased the share of exempt LEVs in Stockholm by 1.9%, with, as expected, a much stronger effect on those commuting across the boundary, with those living inside the cordon having a 13.1% increase, and those owners living outside the cordon having a 5.0% increase. This increase in demand corresponded to an additional 538 (+/‐ 93; 95% C.I.) new exempt LEVs purchased in Stockholm during 2008 (out of a total of 5 427; 9.9%). Policy makers can take note that an incentive‐based policy can increase the demand for LEVs and appears to be an appropriate approach to adopt when attempting to reduce transport emissions through encouraging a transition towards a ‘green’ vehicle fleet.
Resumo:
As governments seek to transition to more efficient vehicle fleets, one strategy has been to incentivize ‘green’ vehicle choice by exempting some of these vehicles from road user charges. As an example, to stimulate sales of Energy-Efficient Vehicles (EEVs) in Sweden, some of these automobiles were exempted from Stockholm’s congestion tax. In this paper the effect this policy had on the demand for new, privately-owned, exempt EEVs is assessed by first estimating a model of vehicle choice and then by applying this model to simulate vehicle alternative market shares under different policy scenarios. The database used to calibrate the model includes owner-specific demographics merged with vehicle registry data for all new private vehicles registered in Stockholm County during 2008. Characteristics of individuals with a higher propensity to purchase an exempt EEV were identified. The most significant factors included intra-cordon residency (positive), distance from home to the CBD (negative), and commuting across the cordon (positive). By calculating vehicle shares from the vehicle choice model and then comparing these estimates to a simulated scenario where the congestion tax exemption was inactive, the exemption was estimated to have substantially increased the share of newly purchased, private, exempt EEVs in Stockholm by 1.8% (+/- 0.3%; 95% C.I.) to a total share of 18.8%. This amounts to an estimated 10.7% increase in private, exempt EEV purchases during 2008 i.e. 519 privately owned, exempt EEVs.
Resumo:
Eutrophication of the Baltic Sea is a serious problem. This thesis estimates the benefit to Finns from reduced eutrophication in the Gulf of Finland, the most eutrophied part of the Baltic Sea, by applying the choice experiment method, which belongs to the family of stated preference methods. Because stated preference methods have been subject to criticism, e.g., due to their hypothetical survey context, this thesis contributes to the discussion by studying two anomalies that may lead to biased welfare estimates: respondent uncertainty and preference discontinuity. The former refers to the difficulty of stating one s preferences for an environmental good in a hypothetical context. The latter implies a departure from the continuity assumption of conventional consumer theory, which forms the basis for the method and the analysis. In the three essays of the thesis, discrete choice data are analyzed with the multinomial logit and mixed logit models. On average, Finns are willing to contribute to the water quality improvement. The probability for willingness increases with residential or recreational contact with the gulf, higher than average income, younger than average age, and the absence of dependent children in the household. On average, for Finns the relatively most important characteristic of water quality is water clarity followed by the desire for fewer occurrences of blue-green algae. For future nutrient reduction scenarios, the annual mean household willingness to pay estimates range from 271 to 448 and the aggregate welfare estimates for Finns range from 28 billion to 54 billion euros, depending on the model and the intensity of the reduction. Out of the respondents (N=726), 72.1% state in a follow-up question that they are either Certain or Quite certain about their answer when choosing the preferred alternative in the experiment. Based on the analysis of other follow-up questions and another sample (N=307), 10.4% of the respondents are identified as potentially having discontinuous preferences. In relation to both anomalies, the respondent- and questionnaire-specific variables are found among the underlying causes and a departure from standard analysis may improve the model fit and the efficiency of estimates, depending on the chosen modeling approach. The introduction of uncertainty about the future state of the Gulf increases the acceptance of the valuation scenario which may indicate an increased credibility of a proposed scenario. In conclusion, modeling preference heterogeneity is an essential part of the analysis of discrete choice data. The results regarding uncertainty in stating one s preferences and non-standard choice behavior are promising: accounting for these anomalies in the analysis may improve the precision of the estimates of benefit from reduced eutrophication in the Gulf of Finland.
Resumo:
The aim of this report is to discuss the role of the relationship type and communication in two Finnish food chains, namely the pig meat-to-sausage (pig meat chain) and the cereal-to-rye bread (rye chain) chains. Furthermore, the objective is to examine those factors influencing the choice of a relationship type and the sustainability of a business relationship. Altogether 1808 questionnaires were sent to producers, processors and retailers operating in these two chains of which 224 usable questionnaires were returned (the response rate being 12.4%). The great majority of the respondents (98.7%) were small businesses employing less than 50 people. Almost 70 per cent of the respondents were farmers. In both chains, formal contracts were stated to be the most important relationship type used with business partners. Although for many businesses written contracts are a common business practice, the essential role of the contracts was the security they provide regarding the demand/supply and quality issues. Relative to the choice of the relationship types, the main difference between the two chains emerged especially with the prevalence of spot markets and financial participation arrangements. The usage of spot markets was significantly more common in the rye chain when compared to the pig meat chain, while, on the other hand, financial participation arrangements were much more common among the businesses in the pig meat chain than in the rye chain. Furthermore, the analysis showed that most of the businesses in the pig meat chain claimed not to be free to choose the relationship type they use. Especially membership in a co-operative and practices of a business partner were mentioned as the reasons limiting this freedom of choice. The main business relations in both chains were described as having a long-term orientation and being based on formal written contracts. Typical for the main business relationships was also that they are not based on the existence of the key persons only; the relationship would remain even if the key people left the business. The quality of these relationships was satisfactory in both chains and across all the stakeholder groups, though the downstream processors and the retailers had a slightly more positive view on their main business partners than the farmers and the upstream processors. The businesses operating in the pig meat chain seemed also to be more dependent on their main business relations when compared to the businesses in the rye chain. Although the communication means were rather similar in both chains (the phone being the most important), there was some variation between the chains concerning the communication frequency necessary to maintain the relationship with the main business partner. In short, the businesses in the pig meat chain seemed to appreciate more frequent communication with their main business partners when compared to the businesses in the rye chain. Personal meetings with the main business partners were quite rare in both chains. All the respondent groups were, however, fairly satisfied with the communication frequency and information quality between them and the main business partner. The business cultures could be argued to be rather hegemonic among the businesses both in the pig meat and rye chains. Avoidance of uncertainty, appreciation of long-term orientation and independence were considered important factors in the business cultures. Furthermore, trust, commitment and satisfaction in business partners were thought to be essential elements of business operations in all the respondent groups. In order to investigate which factors have an effect on the choice of a relationship type, several hypotheses were tested by using binary and multinomial logit analyses. According to these analyses it could be argued that avoidance of uncertainty and risk has a certain effect on the relationship type chosen, i.e. the willingness to avoid uncertainty increases the probability to choose stable relationships, like repeated market transactions and formal written contracts, but not necessary those, which require high financial commitment (like financial participation arrangements). The probability of engaging in financial participation arrangements seemed to increase with long-term orientation. The hypotheses concerning the sustainability of the economic relations were tested by using structural equation model (SEM). In the model, five variables were found to have a positive and statistically significant impact on the sustainable economic relationship construct. Ordered relative to their importance, those factors are: (i) communication quality, (ii) personal bonds, (iii) equal power distribution, (iv) local embeddedness and (v) competition.
Resumo:
The Random Utility Model (RUM) of voting behavior can account for strategic voting by making use of proxy indicators that measure voter incentives to vote strategically. The contribution of this paper is to propose a new method to estimate the RUM in the presence of strategic voters, without having to construct proxy measures of strategic voting incentives. Our method can be used to infer the counterfactual sincere vote of those who vote strategically and provides an estimate of the size of strategic voting. We illustrate the procedure using post-electoral survey data from Spain. Our calculations indicate that strategic voting in Spain is about 2.19 per cent
Resumo:
The aim of this thesis is to examine if a difference exists in income for different categories of drinkers in Ireland using the 2007 Slán data set. The possible impact of alcohol consumption on health status and health care utilisation is also examined. Potential endogeneity and selection bias is accounted for throughout. Endogeneity is where an independent variable included in the model is determined within the context of the model (Chenhall and Moers, 2007). An endogenous relationship between income and alcohol and between health and alcohol is accounted for by the use of separate income equations and separate health status equations for each category of drinker similar to what was done in previous studies into the effects of alcohol on earnings (Hamilton and Hamilton, 1997; Barrett, 2002). Sample selection bias arises when a sector selection is non-random due to individuals choosing a particular sector because of their personal characteristics (Heckman, 1979; Zhang, 2004). In relation to alcohol consumption, selection bias may arise as people may select into a particular drinker group due to the fact that they know that by doing so it will not have a negative effect on their income or health (Hamilton and Hamilton, 1997; Di Pietro and Pedace, 2008; Barrett, 2002). Selection bias of alcohol consumption is accounted for by using the Multinomial Logit OLS Two Step Estimate as proposed by Lee (1982), which is an extension of the Heckman Probit OLS Two Step Estimate. Alcohol status as an ordered variable is examined and possible methods of estimation accounting for this ordinality while also accounting for selection bias are looked at. Limited Information Methods and Full Information Methods of estimation of simultaneous equations are assessed and compared. Findings show that in Ireland moderate drinkers have a higher income compared with abstainers or heavy drinkers. Some studies such as Barrett (2002) argue that this is as a consequence of alcohol improving ones health, which in turn can influence ones productivity which may ultimately be reflected in earnings, due to the fact that previous studies have found that moderate levels of alcohol consumption are beneficial towards ones health status. This study goes on to examine the relationship between health status and alcohol consumption and whether the correlation between income and the consumption of alcohol is similar in terms of sign and magnitude to the correlation between health status and the consumption of alcohol. Results indicate that moderate drinkers have a higher income than non or heavy drinkers, with the weekly household income of moderate drinkers being €660.10, non drinkers being €546.75 and heavy drinkers being €449.99. Moderate Drinkers also report having a better health status than non drinkers and a slightly better health status than heavy drinkers. More non-drinkers report poor health than either moderate or heavy drinkers. As part of the analysis into the effect of alcohol consumption on income and on health status, the relationship between other socio economic variables such as gender, age, education among others, with income, health and alcohol status is examined.
Willingness to Pay for Rural Landscape Improvements: Combining Mixed Logit and Random-Effects Models
Resumo:
This paper reports the findings from a discrete-choice experiment designed to estimate the economic benefits associated with rural landscape improvements in Ireland. Using a mixed logit model, the panel nature of the dataset is exploited to retrieve willingness-to-pay values for every individual in the sample. This departs from customary approaches in which the willingness-to-pay estimates are normally expressed as measures of central tendency of an a priori distribution. Random-effects models for panel data are subsequently used to identify the determinants of the individual-specific willingness-to-pay estimates. In comparison with the standard methods used to incorporate individual-specific variables into the analysis of discrete-choice experiments, the analytical approach outlined in this paper is shown to add considerable explanatory power to the welfare estimates.
Resumo:
Following major reforms of the British National Health Service (NHS) in 1990, the roles of purchasing and providing health services were separated, with the relationship between purchasers and providers governed by contracts. Using a mixed multinomial logit analysis, we show how this policy shift led to a selection of contracts that is consistent with the predictions of a simple model, based on contract theory, in which the characteristics of the health services being purchased and of the contracting parties influence the choice of contract form. The paper thus provides evidence in support of the practical relevance of theory in understanding health care market reform. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.
Resumo:
A literatura argumenta que o Brasil, embora ainda seja o maior exportador mundial de café verde, tem perdido poder neste mercado, pois a concorrência (rivalidade e probabilidade de entrada) imposta por países como a Colômbia e o Vietnã é forte o suficiente para tornar este mercado bastante competitivo. Assim, este artigo avalia o padrão recente de concorrência do mercado mundial de café verde utilizando uma metodologia econométrica mais usualmente empregada em análise antitruste. Para avaliar o comportamento dos consumidores, foram estimadas as elasticidades-preço da demanda mundial de café verde, por tipo de café, usando o modelo de demanda Logit Multinomial Antitruste. Para avaliar o comportamento de equilíbrio de mercado foram realizados testes de instabilidade de share de quantidade por meio de análise de cointegração em painel. Os resultados apontam para aumento da concorrência à variedade de café brasileiro por parte da demanda e manutenção de sharede quantidades como configuração de equilíbrio de mercado.
Resumo:
This research has been triggered by an emergent trend in customer behavior: customers have rapidly expanded their channel experiences and preferences beyond traditional channels (such as stores) and they expect the company with which they do business to have a presence on all these channels. This evidence has produced an increasing interest in multichannel customer behavior and it has motivated several researchers to study the customers’ channel choices dynamics in multichannel environment. We study how the consumer decision process for channel choice and response to marketing communications evolves for a cohort of new customers. We assume a newly acquired customer’s decisions are described by a “trial” model, but the customer’s choice process evolves to a “post-trial” model as the customer learns his or her preferences and becomes familiar with the firm’s marketing efforts. The trial and post-trial decision processes are each described by different multinomial logit choice models, and the evolution from the trial to post-trial model is determined by a customer-level geometric distribution that captures the time it takes for the customer to make the transition. We utilize data for a major retailer who sells in three channels – retail store, the Internet, and via catalog. The model is estimated using Bayesian methods that allow for cross-customer heterogeneity. This allows us to have distinct parameters estimates for a trial and an after trial stages and to estimate the quickness of this transit at the individual level. The results show for example that the customer decision process indeed does evolve over time. Customers differ in the duration of the trial period and marketing has a different impact on channel choice in the trial and post-trial stages. Furthermore, we show that some people switch channel decision processes while others don’t and we found that several factors have an impact on the probability to switch decision process. Insights from this study can help managers tailor their marketing communication strategy as customers gain channel choice experience. Managers may also have insights on the timing of the direct marketing communications. They can predict the duration of the trial phase at individual level detecting the customers with a quick, long or even absent trial phase. They can even predict if the customer will change or not his decision process over time, and they can influence the switching process using specific marketing tools
Resumo:
The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi- population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution for the model is provided in the thermodynamical limit by nding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach, to be considered in future work.
Resumo:
The ordinal logistic regression models are used to analyze the dependant variable with multiple outcomes that can be ranked, but have been underutilized. In this study, we describe four logistic regression models for analyzing the ordinal response variable. ^ In this methodological study, the four regression models are proposed. The first model uses the multinomial logistic model. The second is adjacent-category logit model. The third is the proportional odds model and the fourth model is the continuation-ratio model. We illustrate and compare the fit of these models using data from the survey designed by the University of Texas, School of Public Health research project PCCaSO (Promoting Colon Cancer Screening in people 50 and Over), to study the patient’s confidence in the completion colorectal cancer screening (CRCS). ^ The purpose of this study is two fold: first, to provide a synthesized review of models for analyzing data with ordinal response, and second, to evaluate their usefulness in epidemiological research, with particular emphasis on model formulation, interpretation of model coefficients, and their implications. Four ordinal logistic models that are used in this study include (1) Multinomial logistic model, (2) Adjacent-category logistic model [9], (3) Continuation-ratio logistic model [10], (4) Proportional logistic model [11]. We recommend that the analyst performs (1) goodness-of-fit tests, (2) sensitivity analysis by fitting and comparing different models.^