981 resultados para multi-constraint assignment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The function of a protein can be deciphered with higher accuracy from its structure than from its amino acid sequence. Due to the huge gap in the available protein sequence and structural space, tools that can generate functionally homogeneous clusters using only the sequence information, hold great importance. For this, traditional alignment-based tools work well in most cases and clustering is performed on the basis of sequence similarity. But, in the case of multi-domain proteins, the alignment quality might be poor due to varied lengths of the proteins, domain shuffling or circular permutations. Multi-domain proteins are ubiquitous in nature, hence alignment-free tools, which overcome the shortcomings of alignment-based protein comparison methods, are required. Further, existing tools classify proteins using only domain-level information and hence miss out on the information encoded in the tethered regions or accessory domains. Our method, on the other hand, takes into account the full-length sequence of a protein, consolidating the complete sequence information to understand a given protein better. Results: Our web-server, CLAP (Classification of Proteins), is one such alignment-free software for automatic classification of protein sequences. It utilizes a pattern-matching algorithm that assigns local matching scores (LMS) to residues that are a part of the matched patterns between two sequences being compared. CLAP works on full-length sequences and does not require prior domain definitions. Pilot studies undertaken previously on protein kinases and immunoglobulins have shown that CLAP yields clusters, which have high functional and domain architectural similarity. Moreover, parsing at a statistically determined cut-off resulted in clusters that corroborated with the sub-family level classification of that particular domain family. Conclusions: CLAP is a useful protein-clustering tool, independent of domain assignment, domain order, sequence length and domain diversity. Our method can be used for any set of protein sequences, yielding functionally relevant clusters with high domain architectural homogeneity. The CLAP web server is freely available for academic use at http://nslab.mbu.iisc.ernet.in/clap/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the performance of semi-supervised learning has been theoretically investigated. However, most of this theoretical development has focussed on binary classification problems. In this paper, we take it a step further by extending the work of Castelli and Cover [1] [2] to the multi-class paradigm. Particularly, we consider the key problem in semi-supervised learning of classifying an unseen instance x into one of K different classes, using a training dataset sampled from a mixture density distribution and composed of l labelled records and u unlabelled examples. Even under the assumption of identifiability of the mixture and having infinite unlabelled examples, labelled records are needed to determine the K decision regions. Therefore, in this paper, we first investigate the minimum number of labelled examples needed to accomplish that task. Then, we propose an optimal multi-class learning algorithm which is a generalisation of the optimal procedure proposed in the literature for binary problems. Finally, we make use of this generalisation to study the probability of error when the binary class constraint is relaxed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends the authors' earlier work which adapted robust multiplexed MPC for application to distributed control of multi-agent systems with non-interacting dynamics and coupled constraint sets in the presence of persistent unknown, but bounded disturbances. Specifically, we propose exploiting the single agent update nature of the multiplexed approach, and fix the update sequence to enable input move-blocking and increased discretisation rates. This permits a higher rate of individual policy update to be achieved, whilst incurring no additional computational cost in the corresponding optimal control problems to be solved. A disturbance feedback policy is included between updates to facilitate finding feasible solutions. The new formulation inherits the property of rapid response to disturbances from multiplexing the control and numerical results show that fixing the update sequence does not incur any loss in performance. © 2011 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and liquid chromatography coupled with on-line mass spectrometry (LC/MS/MS) were applied to characterize saponins in crude extracts from Panax ginseng. The MSn data of the [M - H](-) ions of saponins can provide structural information on the sugar sequences of the saccharide chains and on the sapogins of saponins. By ESI-MSn, non-isomeric saponins and isomeric saponins with different aglycones can be determined rapidly in plant extracts. LC/MS/MS is a good complementary analytical tool for determination of isomeric saponins. These approaches constitute powerful analytical tools far rapid screening and structural assignment of saponins in plant extracts. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Single-channel Fusion ARTMAP is functionally equivalent to Fuzzy ART during unsupervised learning and to Fuzzy ARTMAP during supervised learning. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, become inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called paraellel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of them. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network. Fusion ARTMAP's multi-channel coding is illustrated by simulations of the Quadruped Mammal database.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Fusion ARTMAP generalizes the fuzzy ARTMAP architecture in order to adaptively classify multi-channel data. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, beco1ne inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called parallel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of thmn. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose generalized sampling approaches for measuring a multi-dimensional object using a compact compound-eye imaging system called thin observation module by bound optics (TOMBO). This paper shows the proposed system model, physical examples, and simulations to verify TOMBO imaging using generalized sampling. In the system, an object is modulated and multiplied by a weight distribution with physical coding, and the coded optical signal is integrated on to a detector array. A numerical estimation algorithm employing a sparsity constraint is used for object reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size ('size shifts'), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Norms constitute a powerful coordination mechanism among heterogeneous agents. In this paper, we propose a rule language to specify and explicitly manage the normative positions of agents (permissions, prohibitions and obligations), with which distinct deontic notions and their relationships can be captured. Our rule-based formalism includes constraints for more expressiveness and precision and allows to supplement (and implement) electronic institutions with norms. We also show how some normative aspects are given computational interpretation. © 2008 Springer Science+Business Media, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a novel dual-stage algorithm for online multi-target tracking in realistic conditions. In the first stage, the problem of data association between tracklets and detections, given partial occlusion, is addressed using a novel occlusion robust appearance similarity method. This is used to robustly link tracklets with detections without requiring explicit knowledge of the occluded regions. In the second stage, tracklets are linked using a novel method of constraining the linking process that removes the need for ad-hoc tracklet linking rules. In this method, links between tracklets are permitted based on their agreement with optical flow evidence. Tests of this new tracking system have been performed using several public datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 3-DOF (degrees-of-freedom) multi-mode translational/spherical PM (parallel mechanism) with lockable joints is a novel reconfigurable PM. It has both 3-DOF spatial translational operation mode and 3-DOF spherical operation mode. This paper presents an approach to the type synthesis of translational/spherical PMs with lockable joints. Using the proposed approach, several 3-DOF translational/spherical PMs are obtained. It is found that these translational/spherical PMs do not encounter constraint singular configurations and self-motion of sub-chain of a leg during reconfiguration. The approach can also be used for synthesizing other classes of multi-mode PMs with lockable joints, multi-mode PMs with variable kinematic joints, partially decoupled PMs, and reconfigurable PMs with a reconfigurable platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we analyze the performance of cognitive amplify-and-forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi-antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information-assisted AF mode, and the signals undergo independent Nakagami-m fading. In particular, closed-form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami-m fading are presented. More importantly, asymptotic closed-form expressions for the outage probability and SER are derived. These tractable closed-form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach for the multi-objective design optimisation of aerofoil profiles is presented. The proposed method aims to exploit the relative strengths of global and local optimisation algorithms, whilst using surrogate models to limit the number of computationally expensive CFD simulations required. The local search stage utilises a re-parameterisation scheme that increases the flexibility of the geometry description by iteratively increasing the number of design variables, enabling superior designs to be generated with minimal user intervention. Capability of the algorithm is demonstrated via the conceptual design of aerofoil sections for use on a lightweight laminar flow business jet. The design case is formulated to account for take-off performance while reducing sensitivity to leading edge contamination. The algorithm successfully manipulates boundary layer transition location to provide a potential set of aerofoils that represent the trade-offs between drag at cruise and climb conditions in the presence of a challenging constraint set. Variations in the underlying flow physics between Pareto-optimal aerofoils are examined to aid understanding of the mechanisms that drive the trade-offs in objective functions.