951 resultados para moving object detection
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Report for the scientific sojourn at the Swiss Federal Institute of Technology Zurich, Switzerland, between September and December 2007. In order to make robots useful assistants for our everyday life, the ability to learn and recognize objects is of essential importance. However, object recognition in real scenes is one of the most challenging problems in computer vision, as it is necessary to deal with difficulties. Furthermore, in mobile robotics a new challenge is added to the list: computational complexity. In a dynamic world, information about the objects in the scene can become obsolete before it is ready to be used if the detection algorithm is not fast enough. Two recent object recognition techniques have achieved notable results: the constellation approach proposed by Lowe and the bag of words approach proposed by Nistér and Stewénius. The Lowe constellation approach is the one currently being used in the robot localization project of the COGNIRON project. This report is divided in two main sections. The first section is devoted to briefly review the currently used object recognition system, the Lowe approach, and bring to light the drawbacks found for object recognition in the context of indoor mobile robot navigation. Additionally the proposed improvements for the algorithm are described. In the second section the alternative bag of words method is reviewed, as well as several experiments conducted to evaluate its performance with our own object databases. Furthermore, some modifications to the original algorithm to make it suitable for object detection in unsegmented images are proposed.
Resumo:
A recently developed technique, polarimetric radar interferometry, is applied to tackle the problem of the detection of buried objects embedded in surface clutter. An experiment with a fully polarimetric radar in an anechoic chamber has been carried out using different frequency bands and baselines. The processed results show the ability of this technique to detect buried plastic mines and to measure their depth. This technique enables the detection of plastic mines even if their backscatter response is much lower than that of the surface clutter.
Resumo:
This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.
Resumo:
The thesis mainly focuses on material characterization in different environments: freely available samples taken in planar fonn, biological samples available in small quantities and buried objects.Free space method, finds many applications in the fields of industry, medicine and communication. As it is a non-contact method, it can be employed for monitoring the electrical properties of materials moving through a conveyor belt in real time. Also, measurement on such systems at high temperature is possible. NID theory can be applied to the characterization of thin films. Dielectric properties of thin films deposited on any dielectric substrate can be determined. ln chemical industry, the stages of a chemical reaction can be monitored online. Online monitoring will be more efficient as it saves time and avoids risk of sample collection.Dielectric contrast is one of the main factors, which decides the detectability of a system. lt could be noted that the two dielectric objects of same dielectric constant 3.2 (s, of plastic mine) placed in a medium of dielectric constant 2.56 (er of sand) could even be detected employing the time domain analysis of the reflected signal. This type of detection finds strategic importance as it provides solution to the problem of clearance of non-metallic mines. The demining of these mines using the conventional techniques had been proved futile. The studies on the detection of voids and leakage in pipes find many applications.The determined electrical properties of tissues can be used for numerical modeling of cells, microwave imaging, SAR test etc. All these techniques need the accurate determination of dielectric constant. ln the modem world, the use of cellular and other wireless communication systems is booming up. At the same time people are concemed about the hazardous effects of microwaves on living cells. The effect is usually studied on human phantom models. The construction of the models requires the knowledge of the dielectric parameters of the various body tissues. lt is in this context that the present study gains significance. The case study on biological samples shows that the properties of normal and infected body tissues are different. Even though the change in the dielectric properties of infected samples from that of normal one may not be a clear evidence of an ailment, it is an indication of some disorder.ln medical field, the free space method may be adapted for imaging the biological samples. This method can also be used in wireless technology. Evaluation of electrical properties and attenuation of obstacles in the path of RF waves can be done using free waves. An intelligent system for controlling the power output or frequency depending on the feed back values of the attenuation may be developed.The simulation employed in GPR can be extended for the exploration of the effects due to the factors such as the different proportion of water content in the soil, the level and roughness of the soil etc on the reflected signal. This may find applications in geological explorations. ln the detection of mines, a state-of-the art technique for scanning and imaging an active mine field can be developed using GPR. The probing antenna can be attached to a robotic arm capable of three degrees of rotation and the whole detecting system can be housed in a military vehicle. In industry, a system based on the GPR principle can be developed for monitoring liquid or gas through a pipe, as pipe with and without the sample gives different reflection responses. lt may also be implemented for the online monitoring of different stages of extraction and purification of crude petroleum in a plant.Since biological samples show fluctuation in the dielectric nature with time and other physiological conditions, more investigation in this direction should be done. The infected cells at various stages of advancement and the normal cells should be analysed. The results from these comparative studies can be utilized for the detection of the onset of such diseases. Studying the properties of infected tissues at different stages, the threshold of detectability of infected cells can be determined.
Resumo:
Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.
Resumo:
Within the context of active vision, scant attention has been paid to the execution of motion saccades—rapid re-adjustments of the direction of gaze to attend to moving objects. In this paper we first develop a methodology for, and give real-time demonstrations of, the use of motion detection and segmentation processes to initiate capture saccades towards a moving object. The saccade is driven by both position and velocity of the moving target under the assumption of constant target velocity, using prediction to overcome the delay introduced by visual processing. We next demonstrate the use of a first order approximation to the segmented motion field to compute bounds on the time-to-contact in the presence of looming motion. If the bound falls below a safe limit, a panic saccade is fired, moving the camera away from the approaching object. We then describe the use of image motion to realize smooth pursuit, tracking using velocity information alone, where the camera is moved so as to null a single constant image motion fitted within a central image region. Finally, we glue together capture saccades with smooth pursuit, thus effecting changes in both what is being attended to and how it is being attended to. To couple the different visual activities of waiting, saccading, pursuing and panicking, we use a finite state machine which provides inherent robustness outside of visual processing and provides a means of making repeated exploration. We demonstrate in repeated trials that the transition from saccadic motion to tracking is more likely to succeed using position and velocity control, than when using position alone.
Resumo:
This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.
Resumo:
A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate accurately and comprehensively the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and application of this technique for detecting buried infrastructure is currently being investigated. Here, the potential for making a number of simple point vibration measurements in order to detect shallow-buried objects, in particular plastic pipes, is explored. Point measurements can be made relatively quickly without the need for arrays of surface sensors, which can be expensive, time-consuming to deploy, and sometimes impractical in congested areas. At low frequencies, the ground behaves as a simple single-degree-of-freedom (mass-spring) system with a well-defined resonance, the frequency of which will depend on the density and elastic properties of the soil locally. This resonance will be altered by the presence of a buried object whose properties differ from the surrounding soil. It is this behavior which can be exploited in order to detect the presence of a buried object, provided it is buried at a sufficiently shallow depth. The theoretical background is described and preliminary measurements are made both on a dedicated buried pipe rig and on the ground over a domestic waste pipe. Preliminary findings suggest that, for shallow-buried pipes, a measurement of this kind could be a quick and useful adjunct to more conventional methods of buried pipe detection. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.
Resumo:
In this work, a method that synchronizes two video sequences is proposed. Unlike previous methods, which require the existence of correspondences between features tracked in the two sequences, and/or that the cameras are static or jointly moving, the proposed approach does not impose any of these constraints. It works when the cameras move independently, even if different features are tracked in the two sequences. The assumptions underlying the proposed strategy are that the intrinsic parameters of the cameras are known and that two rigid objects, with independent motions on the scene, are visible in both sequences. The relative motion between these objects is used as clue for the synchronization. The extrinsic parameters of the cameras are assumed to be unknown. A new synchronization algorithm for static or jointly moving cameras that see (possibly) different parts of a common rigidly moving object is also proposed. Proof-of-concept experiments that illustrate the performance of these methods are presented, as well as a comparison with a state-of-the-art approach.
Resumo:
Any image processing object detection algorithm somehow tries to integrate the object light (Recognition Step) and applies statistical criteria to distinguish objects of interest from other objects or from pure background (Decision Step). There are various possibilities how these two basic steps can be realized, as can be seen in the different proposed detection methods in the literature. An ideal detection algorithm should provide high recognition sensitiv ity with high decision accuracy and require a reasonable computation effort . In reality, a gain in sensitivity is usually only possible with a loss in decision accuracy and with a higher computational effort. So, automatic detection of faint streaks is still a challenge. This paper presents a detection algorithm using spatial filters simulating the geometrical form of possible streaks on a CCD image. This is realized by image convolution. The goal of this method is to generate a more or less perfect match between a streak and a filter by varying the length and orientation of the filters. The convolution answers are accepted or rejected according to an overall threshold given by the ackground statistics. This approach yields as a first result a huge amount of accepted answers due to filters partially covering streaks or remaining stars. To avoid this, a set of additional acceptance criteria has been included in the detection method. All criteria parameters are justified by background and streak statistics and they affect the detection sensitivity only marginally. Tests on images containing simulated streaks and on real images containing satellite streaks show a very promising sensitivity, reliability and running speed for this detection method. Since all method parameters are based on statistics, the true alarm, as well as the false alarm probability, are well controllable. Moreover, the proposed method does not pose any extraordinary demands on the computer hardware and on the image acquisition process.
Resumo:
This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation