888 resultados para motor evoked potentials
Resumo:
The tendency for contractions of muscles in the upper limb to give rise to increases in the excitability of corticospinal projections to the homologous muscles of the opposite limb is well known. Although the suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. Transcranial direct current (DC) stimulation induces changes in cortical excitability that outlast the period of application. We present evidence that changes in the reactivity of the corticospinal pathway induced by DC stimulation of the motor cortex interact systematically with those brought about by contraction of the muscles of the ipsilateral limb. During the application of flexion torques (up to 50% of maximum) applied at the left wrist, motor evoked potentials (MEPs) were evoked in the quiescent muscles of the right arm by magnetic stimulation of the left motor cortex (M1). The MEPs were obtained prior to and following 10 min of anodal, cathodal or sham DC stimulation of left M1. Cathodal stimulation counteracted increases in the crossed-facilitation of projections to the (right) wrist flexors that otherwise occurred as a result of repeated flexion contractions at the left wrist. In addition, cathodal stimulation markedly decreased the excitability of corticospinal projections to the wrist extensors of the right limb. Thus changes in corticospinal excitability induced by DC stimulation can be shaped (i.e. differentiated by muscle group) by focal contractions of muscles in the limb ipsilateral to the site of stimulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n=8), or training involving finger abduction-adduction without external resistance (n=8). TMS was delivered at rest at intensities from 5% below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60% of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency=21.5+/-1.4 ms; TMS latency=23.4+/-1.4 ms; P
Resumo:
The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The effect of vision on the excitability of corticospinal projections to the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles of right human forearm was investigated before and during discrete movement of the opposite limb. An external force opposed the initial phase of the movement (wrist flexion) and assisted the reverse phase, so that recruitment of the wrist extensors was minimized. Three conditions were used as follows: viewing the inactive right limb (Vision), viewing the mirror image of the moving left limb (Mirror), and with vision of the right limb occluded (No Vision). Transcranial magnetic stimulation was delivered to the left motor cortex: before, at the onset of, or during the left limb movement to obtain motor evoked potentials (MEPs) in the muscles of the right forearm. At and following movement onset, MEPs obtained in the right FCR were smaller in the Vision condition than in the Mirror and No Vision conditions. A distinct pattern of variation was obtained for the ECR. In all conditions, MEPs in this muscle were elevated upon or following movement of the opposite limb. An additional analysis of ipsilateral silent periods indicated that interhemispheric inhibition plays a role in mediating these effects. Activity-dependent changes in corticospinal output to a resting limb during discrete actions of the opposite limb are thus directly contingent upon where one looks. Furthermore, the extent to which vision exerts an influence upon projections to specific muscles varies in accordance with the functional contribution of their homologs to the intended action.
Resumo:
When permitted access to the appropriate forms of rehabilitation, many severely affected stroke survivors demonstrate a capacity for upper limb functional recovery well in excess of that formerly considered possible. Yet, the mechanisms through which improvements in arm function occur in such profoundly impaired individuals remain poorly understood. An exploratory study was undertaken to investigate the capacity for brain plasticity and functional adaptation, in response to 12-h training of reaching using the SMART Arm device, in a group of severely affected stroke survivors with chronic upper limb paresis. Twenty-eight stroke survivors were enroled. Eleven healthy adults provided normative data. To assess the integrity of ipsilateral and contralateral corticospinal pathways, transcranial magnetic stimulation was applied to evoke responses in triceps brachii during an elbow extension task. When present, contralateral motor-evoked potentials (MEPs) were delayed and reduced in amplitude compared to those obtained in healthy adults. Following training, contralateral responses were more prevalent and their average onset latency was reduced. There were no reliable changes in ipsilateral MEPs. Stroke survivors who exhibited contralateral MEPs prior to training achieved higher levels of arm function and exhibited greater improvements in performance than those who did not initially exhibit contralateral responses. Furthermore, decreases in the onset latency of contralateral MEPs were positively related to improvements in arm function. Our findings demonstrate that when severely impaired stroke survivors are provided with an appropriate rehabilitation modality, modifications of corticospinal reactivity occur in association with sustained improvements in upper limb function.
Resumo:
The process of learning to play a musical instrument necessarily alters the functional organisation of the cortical motor areas that are involved in generating the required movements. In the case of the harp, the demands placed on the motor system are quite specific. During performance, all digits with the sole exception of the little finger are used to pluck the strings. With a view to elucidating the impact of having acquired this highly specialized musical skill on the characteristics of corticospinal projections to the intrinsic hand muscles, focal transcranial magnetic stimulation (TMS) was used to elicit motor evoked potentials (MEPs) in three muscles (of the left hand): abductor pollicis brevis (APB); first dorsal interosseous (FDI); and abductor digiti minimi (ADM) in seven harpists. Seven non-musicians served as controls. With respect to the FDI muscle–which moves the index finger, the harpists exhibited reliably larger MEP amplitudes than those in the control group. In contrast, MEPs evoked in the ADM muscle–which activates the little finger, were smaller in the harpists than in the non-musicians. The locations on the scalp over which magnetic stimulation elicited discriminable responses in ADM also differed between the harpists and the non-musicians. This specific pattern of variation in the excitability of corticospinal projections to these intrinsic hand muscles exhibited by harpists is in accordance with the idiosyncratic functional demands that are imposed in playing this instrument.
Resumo:
Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.
Resumo:
Il a été suggéré que la similarité physique entre un observateur et une action observée facilite la perception et la compréhension d’action. Par exemple, l’observation d’un acteur exécutant des gestes de la main ayant une signification culturelle est associée à une augmentation de l’excitabilité corticospinale lorsque les deux individus sont de la même ethnicité (Molnar-Szakacs et al., 2007). La perception tactile serait également facilitée lorsqu’un individu regarde un modèle de sa propre race être touché (Serino et al., 2009), tandis que des études en imagerie cérébrale fonctionnelle suggèrent la présence d’activations plus importantes dans le cortex cingulaire lorsqu’un sujet observe une personne de son propre groupe racial ressentir de la douleur (Xu et al., 2009). Certaines études ont lié ces résultats à un mécanisme de résonance motrice, possiblement associé au système des neurones miroirs (SNM), suggérant que la représentation de l’action dans les aires motrices est facilitée par la similarité physique. Toutefois, la grande majorité des stimuli utilisés dans ces études comportent une composante émotionnelle ou culturelle pouvant masquer les effets purement moteurs liant la similarité physique à un mécanisme de résonance motrice. De plus, la sélectivité de l’activation du SNM face à des stimuli biologiques a récemment été remise en question en raison de biais méthodologiques. La présente thèse présente trois études visant à évaluer l’effet de la similarité physique et des caractéristiques biologiques d’un mouvement sur la résonance motrice à l’aide de mesures comportementales et neurophysiologiques. À cet effet, l’imitation automatique de mouvements de la main, l’excitabilité corticospinale et la désynchronisation du rythme électroencéphalographique mu ont servi de marqueurs de l’activité du SNM. Dans les trois études présentées, la couleur de la peau et l’aspect biologique du stimulus observé ou imité ont été systématiquement manipulés. Nos données confirment la sélectivité du SNM pour le mouvement biologique en démontrant une réponse imitative plus rapide et une désynchronisation du rythme mu plus prononcée lors de la présentation de stimuli biologiques comparativement à des stimuli non-biologiques répliquant les aspects physiques du mouvement humain. Les deux mêmes mesures montrent une réponse neurophysiologique et comportementale équivalente lorsque l’action est exécutée par un agent de couleur similaire ou dissimilaire au participant. Nous rapportons aussi un effet surprenant de la similarité physique sur l’excitabilité corticospinale, où l’observation d’une action exécutée par un agent de couleur différente est associée à une activation plus grande du cortex moteur primaire droit de participants de sexe féminin. Prises dans leur ensemble, ces données suggèrent que la similarité physique avec une action observée ne module généralement pas l’activité du SNM au niveau des aires sensorimotrices en l’absence de composantes culturelles et émotionnelles. De plus, les résultats présentés suggèrent que le SNM est sélectif au mouvement biologique plutôt qu’à l’aspect kinématique du mouvement.
Resumo:
La perception de mouvements est associée à une augmentation de l’excitabilité du cortex moteur humain. Ce système appelé « miroir » sous-tendrait notre habileté à comprendre les gestes posés par une tierce personne puisqu’il est impliqué dans la reconnaissance, la compréhension et l’imitation de ces gestes. Dans cette étude, nous examinons de quelle façon ce système miroir s’implique et se latéralise dans la perception du chant et de la parole. Une stimulation magnétique transcrânienne (TMS) à impulsion unique a été appliquée sur la représentation de la bouche du cortex moteur de 11 participants. La réponse motrice engendrée a été mesurée sous la forme de potentiels évoqués moteurs (PÉMs), enregistrés à partir du muscle de la bouche. Ceux-ci ont été comparés lors de la perception de chant et de parole, dans chaque hémisphère cérébral. Afin d’examiner l’activation de ce système moteur dans le temps, les impulsions de la TMS ont été envoyées aléatoirement à l’intérieur de 7 fenêtres temporelles (500-3500 ms). Les stimuli pour la tâche de perception du chant correspondaient à des vidéos de 4 secondes dans lesquelles une chanteuse produisait un intervalle ascendant de deux notes que les participants devaient juger comme correspondant ou non à un intervalle écrit. Pour la tâche de perception de la parole, les participants regardaient des vidéos de 4 secondes montrant une personne expliquant un proverbe et devaient juger si cette explication correspondait bien à un proverbe écrit. Les résultats de cette étude montrent que les amplitudes des PÉMs recueillis dans la tâche de perception de chant étaient plus grandes après stimulation de l’hémisphère droit que de l’hémisphère gauche, surtout lorsque l’impulsion était envoyée entre 1000 et 1500 ms. Aucun effet significatif n’est ressorti de la condition de perception de la parole. Ces résultats suggèrent que le système miroir de l’hémisphère droit s’active davantage après une présentation motrice audio-visuelle, en comparaison de l’hémisphère gauche.
Resumo:
Chez les personnes post-AVC (Accident Vasculaire Cérébral), spasticité, faiblesse et toute autre coactivation anormale proviennent de limitations dans la régulation de la gamme des seuils des réflexes d'étirement. Nous avons voulu savoir si les déficits dans les influences corticospinales résiduelles contribuaient à la limitation de la gamme des seuils et au développement de la spasticité chez les patients post-AVC. La stimulation magnétique transcranienne (SMT) a été appliquée à un site du cortex moteur où se trouvent les motoneurones agissant sur les fléchisseurs et extenseurs du coude. Des potentiels évoqués moteurs (PEM) ont été enregistrés en position de flexion et d'extension du coude. Afin d'exclure l'influence provenant de l'excitabilité motoneuronale sur l'évaluation des influences corticospinales, les PEM ont été suscités lors de la période silencieuse des signaux électromyographiques (EMG) correspondant à un bref raccourcissement musculaire juste avant l'enclenchement de la SMT. Chez les sujets contrôles, il y avait un patron réciproque d'influences corticospinales (PEM supérieurs en position d'extension dans les extenseurs et vice-versa pour les fléchisseurs). Quant à la plupart des sujets post-AVC ayant un niveau clinique élevé de spasticité, la facilitation corticospinale dans les motoneurones des fléchisseurs et extenseurs était supérieure en position de flexion (patron de co-facilitation). Les résultats démontrent que la spasticité est associée à des changements substantiels des influences corticospinales sur les motoneurones des fléchisseurs et des extenseurs du coude.
Resumo:
Il existe plusieurs théories du contrôle moteur, chacune présumant qu’une différente variable du mouvement est réglée par le cortex moteur. On trouve parmi elles la théorie du modèle interne qui a émis l’hypothèse que le cortex moteur programme la trajectoire du mouvement et l’activité électromyographique (EMG) d’une action motrice. Une autre, appelée l’hypothèse du point d’équilibre, suggère que le cortex moteur établisse et rétablisse des seuils spatiaux; les positions des segments du corps auxquelles les muscles et les réflexes commencent à s’activer. Selon ce dernier, les paramètres du mouvement sont dérivés sans pré-programmation, en fonction de la différence entre la position actuelle et la position seuil des segments du corps. Pour examiner de plus près ces deux théories, nous avons examiné l’effet d’un changement volontaire de l’angle du coude sur les influences cortico-spinales chez des sujets sains en employant la stimulation magnétique transcrânienne (TMS) par-dessus le site du cortex moteur projetant aux motoneurones des muscles du coude. L’état de cette aire du cerveau a été évalué à un angle de flexion du coude activement établi par les sujets, ainsi qu’à un angle d’extension, représentant un déplacement dans le plan horizontal de 100°. L’EMG de deux fléchisseurs du coude (le biceps et le muscle brachio-radial) et de deux extenseurs (les chefs médial et latéral du triceps) a été enregistrée. L’état d’excitabilité des motoneurones peut influer sur les amplitudes des potentiels évoqués moteurs (MEPs) élicitées par la TMS. Deux techniques ont été entreprises dans le but de réduire l’effet de cette variable. La première était une perturbation mécanique qui raccourcissait les muscles à l'étude, produisant ainsi une période de silence EMG. La TMS a été envoyée avec un retard après la perturbation qui entraînait la production du MEP pendant la période de silence. La deuxième technique avait également le but d’équilibrer l’EMG des muscles aux deux angles du coude. Des forces assistantes ont été appliquées au bras par un moteur externe afin de compenser les forces produites par les muscles lorsqu’ils étaient actifs comme agonistes d’un mouvement. Les résultats des deux séries étaient analogues. Un muscle était facilité quand il prenait le rôle d’agoniste d’un mouvement, de manière à ce que les MEPs observés dans le biceps fussent de plus grandes amplitudes quand le coude était à la position de flexion, et ceux obtenus des deux extenseurs étaient plus grands à l’angle d’extension. Les MEPs examinés dans le muscle brachio-radial n'étaient pas significativement différents aux deux emplacements de l’articulation. Ces résultats démontrent que les influences cortico-spinales et l’activité EMG peuvent être dissociées, ce qui permet de conclure que la voie cortico-spinale ne programme pas l’EMG à être générée par les muscles. Ils suggèrent aussi que le système cortico-spinal établit les seuils spatiaux d’activation des muscles lorsqu’un segment se déplace d’une position à une autre. Cette idée suggère que des déficiences dans le contrôle des seuils spatiaux soient à la base de certains troubles moteurs d’origines neurologiques tels que l’hypotonie et la spasticité.
Resumo:
Chez l’humain, différents protocoles de stimulation magnétique transcrânienne répétée (SMTr) peuvent être utilisés afin de manipuler expérimentalement la plasticité cérébrale au niveau du cortex moteur primaire (M1). Ces techniques ont permis de mieux comprendre le rôle du sommeil dans la régulation de la plasticité cérébrale. Récemment, une étude a montré que lorsqu’une première session de stimulation SMTr au niveau de M1 est suivie d’une nuit de sommeil, l’induction subséquente de la plasticité par une deuxième session SMTr est augmentée. La présente étude a investigué si ce type de métaplasticité pouvait également bénéficier d’une sieste diurne. Quatorze sujets en santé ont reçu deux sessions de intermittent theta burst stimulation (iTBS) connue pour son effet facilitateur sur l’excitabilité corticale. Les sessions de stimulation étaient séparées par une sieste de 90 minutes ou par une période équivalente d’éveil. L’excitabilité corticale était quantifiée en terme d’amplitude des potentiels évoqués moteurs (PEM) mesurés avant et après chaque session de iTBS. Les résultats montrent que la iTBS n’est pas parvenue à augmenter de manière robuste l’amplitude des PEMs lors de la première session de stimulation. Lors de la deuxième session de stimulation, la iTBS a produit des changements plastiques variables et ce peu importe si les sujets ont dormi ou pas. Les effets de la iTBS sur l’excitabilité corticale étaient marqués par une importante variabilité inter et intra-individuelle dont les possibles causes sont discutées.
Resumo:
Le contrôle des mouvements du bras fait intervenir plusieurs voies provenant du cerveau. Cette thèse, composée principalement de deux études, tente d’éclaircir les contributions des voies tirant leur origine du système vestibulaire et du cortex moteur. Dans la première étude (Raptis et al 2007), impliquant des mouvements d’atteinte, nous avons cerné l’importance des voies descendantes partant du système vestibulaire pour l’équivalence motrice, i.e. la capacité du système moteur à atteindre un but moteur donné lorsque le nombre de degrés de liberté articulaires varie. L’hypothèse émise était que le système vestibulaire joue un rôle essentiel dans l’équivalence motrice. Nous avons comparé la capacité d’équivalence motrice de sujets sains et de patients vestibulodéficients chroniques lors de mouvements nécessitant un contrôle des positions du bras et du tronc. Pendant que leur vision était temporairement bloquée, les sujets devaient soit maintenir une position de l’index pendant une flexion du tronc, soit atteindre une cible dans l’espace péri-personnel en combinant le mouvement du bras avec une flexion du tronc. Lors d’essais déterminés aléatoirement et imprévus par les participants, leur tronc était retenu par un mécanisme électromagnétique s’activant en même temps que le signal de départ. Les sujets sains ont pu préserver la position ou la trajectoire de l’index dans les deux conditions du tronc (libre, bloqué) en adaptant avec une courte latence (60-180 ms) les mouvements articulaires au niveau du coude et de l’épaule. En comparaison, six des sept patients vestibulodéficients chroniques ont présenté des déficits au plan des adaptations angulaires compensatoires. Pour ces patients, entre 30 % et 100 % du mouvement du tronc n’a pas été compensé et a été transmis à la position ou trajectoire de l’index. Ces résultats indiqueraient que les influences vestibulaires évoquées par le mouvement de la tête pendant la flexion du tronc jouent un rôle majeur pour garantir l’équivalence motrice dans ces tâches d’atteinte lorsque le nombre de degrés de liberté articulaires varie. Également, ils démontrent que la plasticité de long terme survenant spontanément après une lésion vestibulaire unilatérale complète ne serait pas suffisante pour permettre au SNC de retrouver un niveau d’équivalence motrice normal dans les actions combinant un déplacement du bras et du tronc. Ces tâches de coordination bras-tronc constituent ainsi une approche inédite et sensible pour l’évaluation clinique des déficits vestibulaires. Elles permettent de sonder une dimension fonctionnelle des influences vestibulaires qui n’était pas prise en compte dans les tests cliniques usuels, dont la sensibilité relativement limitée empêche souvent la détection d’insuffisances vestibulaires six mois après une lésion de ces voies. Avec cette première étude, nous avons donc exploré comment le cerveau et les voies descendantes intègrent des degrés de liberté articulaires supplémentaires dans le contrôle du bras. Dans la seconde étude (Raptis et al 2010), notre but était de clarifier la nature des variables spécifiées par les voies descendantes pour le contrôle d’actions motrices réalisées avec ce membre. Nous avons testé l’hypothèse selon laquelle les voies corticospinales contrôlent la position et les mouvements des bras en modulant la position-seuil (position de référence à partir de laquelle les muscles commencent à être activés en réponse à une déviation de cette référence). Selon ce principe, les voies corticospinales ne spécifieraient pas directement les patrons d’activité EMG, ce qui se refléterait par une dissociation entre l’EMG et l’excitabilité corticospinale pour des positions-seuils différentes. Dans un manipulandum, des participants (n=16) ont modifié leur angle du poignet, d’une position de flexion (45°) à une position d’extension (-25°), et vice-versa. Les forces élastiques passives des muscles ont été compensées avec un moteur couple afin que les sujets puissent égaliser leur activité EMG de base dans les deux positions. L’excitabilité motoneuronale dans ces positions a été comparée à travers l’analyse des réponses EMG évoquées à la suite d’étirements brefs. Dans les deux positions, le niveau d’EMG et l’excitabilité motoneuronale étaient semblables. De plus, ces tests ont permis de montrer que le repositionnement du poignet était associé à une translation de la position-seuil. Par contre, malgré la similitude de l’excitabilité motoneuronale dans ces positions, l’excitabilité corticospinale des muscles du poignet était significativement différente : les impulsions de stimulation magnétique transcrânienne (TMS; à 1.2 MT, sur l’aire du poignet de M1) ont provoqué des potentiels moteurs évoqués (MEP) de plus grande amplitude en flexion pour les fléchisseurs comparativement à la position d’extension et vice-versa pour les extenseurs (p<0.005 pour le groupe). Lorsque les mêmes positions étaient établies après une relaxation profonde, les réponses réflexes et les amplitudes des MEPs ont drastiquement diminué. La relation caractéristique observée entre position physique et amplitude des MEPs dans le positionnement actif s’est aussi estompée lorsque les muscles étaient relâchés. Cette étude suggère que la voie corticospinale, en association avec les autres voies descendantes, participerait au contrôle de la position-seuil, un processus qui prédéterminerait le référentiel spatial dans lequel l’activité EMG émerge. Ce contrôle de la « référence » constituerait un principe commun s’appliquant à la fois au contrôle de la force musculaire, de la position, du mouvement et de la relaxation. Nous avons aussi mis en évidence qu’il est nécessaire, dans les prochaines recherches ou applications utilisant la TMS, de prendre en compte la configuration-seuil des articulations, afin de bien interpréter les réponses musculaires (ou leurs changements) évoquées par cette technique; en effet, la configuration-seuil influencerait de manière notable l’excitabilité corticomotrice, qui peut être considérée comme un indicateur non seulement lors d’activités musculaires, mais aussi cognitives, après apprentissages moteurs ou lésions neurologiques causant des déficits moteurs (ex. spasticité, faiblesse). Considérées dans leur ensemble, ces deux études apportent un éclairage inédit sur des principes fondamentaux du contrôle moteur : nous y illustrons de manière plus large le rôle du système vestibulaire dans les tâches d’atteinte exigeant une coordination entre le bras et son « support » (le tronc) et clarifions l’implication des voies corticomotrices dans la spécification de paramètres élémentaires du contrôle moteur du bras. De plus amples recherches sont cependant nécessaires afin de mieux comprendre comment les systèmes sensoriels et descendants (e.g. vestibulo-, réticulo-, rubro-, propriospinal) participent et interagissent avec les signaux corticofugaux afin de spécifier les seuils neuromusculaires dans le contrôle de la posture et du mouvement.
Resumo:
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.