928 resultados para modeling and visualization
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
Die Preise für Speicherplatz fallen stetig, da verwundert es nicht, dass Unternehmen riesige Datenmengen anhäufen und sammeln. Diese immensen Datenmengen müssen jedoch mit geeigneten Methoden analysiert werden, um für das Unternehmen überlebensnotwendige Muster zu identifizieren. Solche Muster können Probleme aber auch Chancen darstellen. In jedem Fall ist es von größter Bedeutung, rechtzeitig diese Muster zu entdecken, um zeitnah reagieren zu können. Um breite Nutzerschichten anzusprechen, müssen Analysemethoden ferner einfach zu bedienen sein, sofort Rückmeldungen liefern und intuitive Visualisierungen anbieten. Ich schlage in der vorliegenden Arbeit Methoden zur Visualisierung und Filterung von Assoziationsregeln basierend auf ihren zeitlichen Änderungen vor. Ich werde lingustische Terme (die durch Fuzzymengen modelliert werden) verwenden, um die Historien von Regelbewertungsmaßen zu charakterisieren und so eine Ordnung von relevanten Regeln zu generieren. Weiterhin werde ich die vorgeschlagenen Methoden auf weitereModellarten übertragen, die Software-Plattformvorstellen, die die Analysemethoden dem Nutzer zugänglich macht und schließlich empirische Auswertungen auf Echtdaten aus Unternehmenskooperationen vorstellen, die die Wirksamkeit meiner Vorschläge belegen.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014
Ab initio modeling and molecular dynamics simulation of the alpha 1b-adrenergic receptor activation.
Resumo:
This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.
Resumo:
The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. In the present paper we propose more general STAR transition functions which encompass both threshold nonlinearity and asymmetric e¤ects. Our framework allows for a gradual adjustment from one regime to another, and considers threshold e¤ects by encompassing other existing models, such as TAR models. We apply our methodology to three di¤erent exchange rate data-sets, one for developing countries, and o¢ cial nominal exchange rates, the sec- ond emerging market economies using black market exchange rates and the third for OECD economies.
Resumo:
The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. The present is a technical Appendix to Cerrato et al. (2009) and presents detailed simulations of the proposed methodology and additional empirical results.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.