917 resultados para model-based clustering
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
Given the very large amount of data obtained everyday through population surveys, much of the new research again could use this information instead of collecting new samples. Unfortunately, relevant data are often disseminated into different files obtained through different sampling designs. Data fusion is a set of methods used to combine information from different sources into a single dataset. In this article, we are interested in a specific problem: the fusion of two data files, one of which being quite small. We propose a model-based procedure combining a logistic regression with an Expectation-Maximization algorithm. Results show that despite the lack of data, this procedure can perform better than standard matching procedures.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
For radiotherapy treatment planning of retinoblastoma inchildhood, Computed Tomography (CT) represents thestandard method for tumor volume delineation, despitesome inherent limitations. CT scan is very useful inproviding information on physical density for dosecalculation and morphological volumetric information butpresents a low sensitivity in assessing the tumorviability. On the other hand, 3D ultrasound (US) allows ahigh accurate definition of the tumor volume thanks toits high spatial resolution but it is not currentlyintegrated in the treatment planning but used only fordiagnosis and follow-up. Our ultimate goal is anautomatic segmentation of gross tumor volume (GTV) in the3D US, the segmentation of the organs at risk (OAR) inthe CT and the registration of both. In this paper, wepresent some preliminary results in this direction. Wepresent 3D active contour-based segmentation of the eyeball and the lens in CT images; the presented approachincorporates the prior knowledge of the anatomy by usinga 3D geometrical eye model. The automated segmentationresults are validated by comparing with manualsegmentations. Then, for the fusion of 3D CT and USimages, we present two approaches: (i) landmark-basedtransformation, and (ii) object-based transformation thatmakes use of eye ball contour information on CT and USimages.
Resumo:
This research was conducted in the context of the project IRIS 8A Health and Society (2002-2008) and financially supported by the University of Lausanne. It was aomed at developping a model based on the elder people's experience and allowed us to develop a "Portrait evaluation" of fear of falling using their examples and words. It is a very simple evaluation, which can be used by professionals, but by the elder people themselves. The "Portrait evaluation" and the user's guide are on free access, but we would very much approciate to know whether other people or scientists have used it and collect their comments. (contact: Chantal.Piot-Ziegler@unil.ch)The purpose of this study is to create a model grounded in the elderly people's experience allowing the development of an original instrument to evaluate FOF.In a previous study, 58 semi-structured interviews were conducted with community-dwelling elderly people. The qualitative thematic analysis showed that fear of falling was defined through the functional, social and psychological long-term consequences of falls (Piot-Ziegler et al., 2007).In order to reveal patterns in the expression of fear of falling, an original qualitative thematic pattern analysis (QUAlitative Pattern Analysis - QUAPA) is developed and applied on these interviews.The results of this analysis show an internal coherence across the three dimensions (functional, social and psychological). Four different patterns are found, corresponding to four degrees of fear of falling. They are formalized in a fear of falling intensity model.This model leads to a portrait-evaluation for fallers and non-fallers. The evaluation must be confronted to large samples of elderly people, living in different environments. It presents an original alternative to the concept of self-efficacy to evaluate fear of falling in older people.The model of FOF presented in this article is grounded on elderly people's experience. It gives an experiential description of the three dimensions constitutive of FOF and of their evolution as fear increases, and defines an evaluation tool using situations and wordings based on the elderly people's discourse.
Resumo:
BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.
Resumo:
Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.
Resumo:
The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.
Resumo:
General clustering deals with weighted objects and fuzzy memberships. We investigate the group- or object-aggregation-invariance properties possessed by the relevant functionals (effective number of groups or objects, centroids, dispersion, mutual object-group information, etc.). The classical squared Euclidean case can be generalized to non-Euclidean distances, as well as to non-linear transformations of the memberships, yielding the c-means clustering algorithm as well as two presumably new procedures, the convex and pairwise convex clustering. Cluster stability and aggregation-invariance of the optimal memberships associated to the various clustering schemes are examined as well.