981 resultados para mixed-ligand complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IR and ligand field spectra and the structure of the mixed-ligand compound [N,N-dimethyl-N′-ethyl-1,2-diaminoethane(1-phenyl-1,3-butanedionato)(perchlorato)copper(II)]), [Cu(dmeen)bzac(OClO3)], are reported. The structure was determined by single crystal X-ray diffraction analysis (triclinic, space group ). The structure is square pyramidal with the apical position occupied by one oxygen of the tetrahedral perchlorato group (distance from copper 2.452(5) Å). The plane of the phenyl ring is tilted forming an angle of 16.72(14)° with the plane of the β-dionato moiety. The nitrogenous base adopts the gauche conformation with torsional angle of 108.72(14)°. The ethyl group is cis oriented relative to the phenyl group, occupying the equatorial position with the vector of the carbon-nitrogen bond forming an angle of 143.9(3)° with the CuNN plane. The interactions of the adjacent axial hydrogen with an oxygen of the perchlorato group result in hydrogen bond formation. The IR spectra reveal that in the solid state the Br− or Cl− displace easily the ClO4− group. The shifts in the ligand field spectra indicate that polar solvents participate in donor-acceptor interactions with the metal centre along an axis perpendicular to the CuN2O2 plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IR, the ligand field spectra and the crystal structure of the mixed-ligand compound [(aquo)2,2P1 , a = 8.718(5), b = 9.407(5), c = 13.484 (7) Å, = 94.17(4)°, = 105.12(5)°, = 119.75(5)°, Z = 2, R = 0.0332, R W = 0.0869).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of the 4-R-benzaldehyde thiosemicarbazones (denoted in general as L-R; R = OCH(3), CH(3), H, Cl and NO(2)) with trans-[Pd(PPh(3))(2)Cl(2)] afforded a group of mixed-ligand complexes (denoted in general as 1-R) incorporating a N,S-coordinated thiosemicarbazone. a triphenylphosphine and a chloride. Similar reaction with Na(2)[PdCl(4)] afforded a family of bis-thiosemicarbazone complexes (denoted in general as 2-R), where each ligand is N,S-coordinated. Crystal structures of 1-CH(3), 1-NO(2), 2-OCH(3), 2-NO(2) and L-NO(2) have been determined. In all the complexes the thiosemicarbazones are coordinated to the metal center, via dissociation of the acidic proton, as bidentate N,S-donors forming five-membered chelate rings. With reference to the structure of the uncoordinated thiosemicarbazone, this coordination mode is associated with a conformational change around the C=N bond. All the 1-R and 2-R complexes display intense absorptions in the visible region. Catalytic activity of the 1-R and 2-R complexes towards some C-C coupling reactions (e.g. Suzuki, Heck and Sonogashira) has been examined and while both are found to be efficient catalysts, 1-R is much better catalyst than 2-R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel rhenium complexes containing the maltolate (mal) or kojate (koj) anions as chelating ligands have been synthesized: [ReOCl(mal)(2)] (1), [ReOCl(2)(mal)(PPh(3))] (2), [ReOBr(2)(mal)(PPh(3))] (3), [ReOCl2(koj)(PPh(3))] (4) and [ReOBr(2)(koj)(PPh(3))] (5). The products have been characterized by MR, (1)H, (13)C, and (31)P NMR spectroscopies and elemental analysis. The crystal and molecular structures of all complexes were determined. Complex I crystallizes monoclinic, space group C2/c, Z = 8. It contains two O, O`-bidentate maltolate ligands and one chloro ligand at the (ReO)(3+) unit, so that a distorted octahedral geometry is adopted by the six-coordinated rhenium(V) center. The chloro ligand occupies a cis position to the oxo ligand. Complexes 2 and 3 are isostructural and crystallize orthorhombic, space group Pbca and Z = 8. The isostructural complexes 4 and 5 crystallize monoclinic, space group P2(1)/n and Z = 4. In complexes 2-5, the (ReO)(3+) unit is coordinated by a monoanionic O,O-bidentate unit of the maltolate (2 and 3) or kojate (41 and 5) ligand, one triphenylphosphine and two halogeno ligands (Cl in 2 and 4; Br in 3 and 5), with the rhenium(V) center in a distorted octahedral environment. The halide ligands are in cis positions to each other. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm−1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s−1 under zero force up to 15 s−1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary explorations of the annihilation electrogenerated chemiluminescence (ECL) of mixed metal complexes have revealed opportunities to enhance emission intensities and control the relative intensities from multiple luminophores through the applied potentials. However, the mechanisms of these systems are only poorly understood. Herein, we present a comprehensive characterisation of the annihilation ECL of mixtures of tris(2,2′-bipyridine)ruthenium(ii) hexafluorophosphate ([Ru(bpy)3](PF6)2) and fac-tris(2-phenylpyridine)iridium(iii) ([Ir(ppy)3]). This includes a detailed investigation of the change in emission intensity from each luminophore as a function of both the applied electrochemical potentials and the relative concentrations of the two complexes, and a direct comparison with two mixed (Ru/Ir) ECL systems for which emission from only the ruthenium-complex was previously reported. Concomitant emission from both luminophores was observed in all three systems, but only when: (1) the applied potentials were sufficient to generate the intermediates required to form the electronically excited state of both complexes; and (2) the concentration of the iridium complex (relative to the ruthenium complex) was sufficient to overcome quenching processes. Both enhancement and quenching of the ECL of the ruthenium complex was observed, depending on the experimental conditions. The observations were rationalised through several complementary mechanisms, including resonance energy transfer and various energetically favourable electron-transfer pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protonation of 4-dimethylaminobenzylidenepyruvate (DMBP) and 2-chloro-4-dimethylaminobenzylidenepyruvate (2-CI-DMBP) and their complex formation with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II) and Al(III) have been studied by potentiometric and spectrophotometric methods at 25 °C and ionic strength 0.500 M, held with sodium perchlorate. The stability order found for 1 :1 complexes of both ligands is Al(III) > Cu(II) > Pb(II) > Ni(II) > Zn(II) > Co(II) > Cd(II) > Mn(II). The stability changes move in the same direction as the pKa of the ligands. The results are compared with literature values reported for metal ion pyruvate systems. Thermodynamic stabilities of ternary complexes formed in Cu(II)-B-L- systems, where B = 2,2′-bipyridyl (bipy), ethylenediamine or glycinate and L = DMBP or 2-CI-DMBP, were also determined. The Cu(bipy)L+ species are more stable than would be expected on purely statistical grounds. The importance of the :t system associated with bipy on the enhanced stability of its mixed ligand complexes is stressed. Analytical applications of the investigated ligands are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-beta-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [(VO)-O-V(OEt) L] (1), the mixed ligand complex [(VO)-O-V(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [(VO)-O-V(OEt)L](2)(mu-4,4'-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [(VO)-O-V(N-N)L] (4,5) (where N-N = 2,2'-bipy and o-phen) are also presented here. The [(VO)-O-V(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [V-IV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [(VO)-O-V(OEt)(ONO)] (1').

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A few mixed ligand transition metal carbodithioate complexes of the general formula [M(4-MPipzcdt)x(phen)y]Y (M = Mn(II), Co(II), Zn(II); 4-MPipzcdt = 4-methylpiperazine-1-carbodithioate; phen = 1,10-phenanthroline; x = 1 and y = 2 when Y = Cl; x = 2 and y = 1 when Y = nil) were synthesized and screened for their antimicrobial activity against Candida albicans, Escherichia coli, Pseudomonas aeruginosa,Staphylococcus aureus and Enterococcusfaecalis by disk diffusion method. All the complexes exhibited prominent antimicrobial activity against tested pathogenic strains with the MIC values in the range <8-512 μgmL-1. The complexes [Mn(4-MPipzcdt)2(phen)] and [Co(4-MPipzcdt)(phen)2]Cl inhibited the growth of Candida albicans at a concentration as low as 8 µgmL-1.The complexes were also evaluated for their toxicity towards human transformed rhabdomyosarcoma cells (RD cells). Moderate cell viability of the RD cells was exhibited against the metal complexes.