58 resultados para minocycline
Resumo:
New tetracycline and streptomycin resistance genes, tet(44) and ant(6)-Ib, were identified in Campylobacter fetus subsp. fetus within a transferable pathogenicity island that is typically unique to Campylobacter fetus subsp. venerealis. The 640-amino-acid tetracycline resistance determinant, Tet 44, belongs to a class of proteins that confers resistance to tetracycline and minocycline by ribosomal protection. The 286-amino-acid streptomycin resistance determinant, ANT(6)-Ib, belongs to a family of aminoglycoside nucleotidyltransferases. The resistance phenotypes were demonstrated by gene inactivation and expression.
Resumo:
OBJECTIVES: To assess the microbiological outcome of local administration of minocycline hydrochloride microspheres 1 mg (Arestin) in cases with peri-implantitis and with a follow-up period of 12 months. MATERIAL AND METHODS: After debridement, and local administration of chlorhexidine gel, peri-implantitis cases were treated with local administration of minocycline microspheres (Arestin). The DNA-DNA checkerboard hybridization method was used to detect bacterial presence during the first 360 days of therapy. RESULTS: At Day 10, lower bacterial loads for 6/40 individual bacteria including Actinomyces gerensceriae (P<0.1), Actinomyces israelii (P<0.01), Actinomyces naeslundi type 1 (P<0.01) and type 2 (P<0.03), Actinomyces odontolyticus (P<0.01), Porphyromonas gingivalis (P<0.01) and Treponema socranskii (P<0.01) were found. At Day 360 only the levels of Actinobacillus actinomycetemcomitans were lower than at baseline (mean difference: 1x10(5); SE difference: 0.34x10(5), 95% CI: 0.2x10(5) to 1.2x10(5); P<0.03). Six implants were lost between Days 90 and 270. The microbiota was successfully controlled in 48%, and with definitive failures (implant loss and major increase in bacterial levels) in 32% of subjects. CONCLUSIONS: At study endpoint, the impact of Arestin on A. actinomycetemcomitans was greater than the impact on other pathogens. Up to Day 180 reductions in levels of Tannerella forsythia, P. gingivalis, and Treponema denticola were also found. Failures in treatment could not be associated with the presence of specific pathogens or by the total bacterial load at baseline. Statistical power analysis suggested that a case control study would require approximately 200 subjects.
Resumo:
AIM: To monitor over 12 months clinical and radiographic changes occurring after adjunctive local delivery of minocycline microspheres for the treatment of peri-implantitis. MATERIAL AND METHODS: In 25 partially edentulous subjects, 31 implants diagnosed with peri-implantitis were treated. Three weeks after oral hygiene instruction, mechanical debridement and local antiseptic cleansing using 0.2% chlorhexidine gel, baseline (Day 0) parameters were recorded. Minocycline microspheres (Arestin) were locally delivered to each implant site with bone loss and a probing pocket depth (PPD) >or=5 mm. Rescue therapy with Arestin was allowed at Days 180 and 270 at any site exhibiting an increase in PPD>or=2 mm from the previous visit. The following clinical parameters were recorded at four sites/implant at Day 0, 10, 30, 60, 90, 180, 270 and 360: PPD, clinical attachment level (CAL), bleeding on probing (BOP) and plaque index (PlI). RESULTS: Six implants in six subjects were either rescued or exited because of persisting active peri-implantitis. Successful implants showed a statistically significant reduction in both PPD and percentage of sites with BOP between baseline and Day 360 (P<0.05). At mesial implant sites, the mean PPD reduction amounted to 1.6 mm (95% CI: 0.9-2.2 mm, P<0.001) and was accompanied by a statistically significant reduction of the BOP value (P<0.001). Binary regression analysis showed that the clinical parameters and smoking history could not discriminate between successfully treated and rescued or exited implants at any observation time point. CONCLUSION: Non-surgical mechanical treatment of peri-implantitis lesions with adjunctive local delivery of microencapsulated minocycline led to positive effects on clinical parameters up to 12 months.
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.
Resumo:
The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64 mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of Porphyromonas gingivalis ATCC 33277 but not of Aggregatibacter actinomycetemcomitans Y4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1-2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine.
Resumo:
For the first time, we analyzed the clonality and susceptibility of Burkholderia cepacia complex isolates (n=55) collected during 1998-2013 from 44 Swiss cystic fibrosis (CF)-patients. B. cenocepacia (n=28) and B. multivorans (n=14) were mainly of sequence type (ST) 833 and ST874, respectively; B. contaminans isolates were of ST102. Overall, the following MIC50/90s (mg/l) were obtained: piperacillin/tazobactam (≤ 4/≥ 128), ticarcillin/clavulanate (≥ 256/≥256), ceftazidime (2/≥ 32), aztreonam (16/≥ 32), meropenem (2/8), tobramycin (8/≥ 16), minocycline (≤ 1/16), levofloxacin (≤ 0.5/≥ 16), and trimethoprim/sulfamethoxazole (≤ 0.5/4). This is the first survey providing information on the clonality of Bcc detected in Switzerland. Species identification and antimicrobial susceptibility tests should always be routinely performed to adapt more targeted therapies.
Resumo:
Central Line-Associated Bloodstream Infections (CLABSIs) are one of the most costly and preventable cases of morbidity and mortality among intensive care units (ICUs) in health care today. In 2008, the Centers for Medicare and Medicaid Services Medicare Program, under the Deficit Reduction Act, announced it will no longer reimburse hospitals for such adverse events among those related to CLABSIs. This reveals the financial burden shift onto the hospital rather than the health care payer who can now withhold reimbursements. With this weighing more heavily on hospital management, decision makers will need to find a way to completely prevent cases of CLABSI or simply pay for the financial consequences. ^ To reduce the risk of CLABSIs, several clinical, preventive interventions have been studied and even instituted including the Central Line (CL) Bundle and Antimicrobial Coated Central Venous Catheters (AM-CVCs). I carried out a formal systematic review on the topic to compare the cost-effectiveness of the Central Line (CL) Bundle to the commercially available antimicrobial coated central venous catheters (AM-CVCs) in preventing CLABSIs among critically and chronically ill patients in the U.S. Evidence was assessed for inclusion against predefined criteria. I, myself, conducted the data extraction. Ten studies were included in the review. Efficacy in reducing the mean incidence rate of CLABSI by the CL Bundle and AM-CVC interventions were compared with one another including costs. ^ The AM-CVC impregnated with antibiotics, rifampin-minocycline (AI-RM) is more clinically effective than the CL Bundle in reducing the mean rate of CLABSI per 1,000 catheter days. The lowest mean incidence rate of CLABSI per 1,000 catheter days among the AM-CVC studies was as low as zero in favor of the AI-RM. Moreover, the review revealed that the AI-RM appears to be more cost-effective than the CL Bundle. Results showed the adjusted incremental cost of the CL Bundle per ICU patient requiring a CVC to be approximately $196 while the AI-RM at only an additional cost of $48 per ICU patient requiring a CVC. ^ Limited data regarding the cost of the CL Bundle made it difficult to make a true comparison to the direct cost of the AM-CVCs. However, using the result I did have from this review, I concluded that the AM-CVCs do appear to be more cost-effective in decreasing the mean rate of CLABSI while also minimizing incremental costs per CVC than the CL Bundle. This review calls for further research addressing the cost of the CL Bundle and compliance and more effective study designs such as randomized control trials comparing the efficacy and cost of the CL Bundle to the AM-CVCs. Barriers that may face health care managers when implementing the CL Bundle or AM-CVCs include additional costs associated with the intervention, educational training and ongoing reinforcement as well as creating a new culture of understanding.^
Resumo:
Ischemic stroke is the most common life-threatening neurological disease and has limited therapeutic options. One component of ischemic neuronal death is inflammation. Here we show that doxycycline and minocycline, which are broad-spectrum antibiotics and have antiinflammatory effects independent of their antimicrobial activity, protect hippocampal neurons against global ischemia in gerbils. Minocycline increased the survival of CA1 pyramidal neurons from 10.5% to 77% when the treatment was started 12 h before ischemia and to 71% when the treatment was started 30 min after ischemia. The survival with corresponding pre- and posttreatment with doxycycline was 57% and 47%, respectively. Minocycline prevented completely the ischemia-induced activation of microglia and the appearance of NADPH-diaphorase reactive cells, but did not affect induction of glial acidic fibrillary protein, a marker of astrogliosis. Minocycline treatment for 4 days resulted in a 70% reduction in mRNA induction of interleukin-1β-converting enzyme, a caspase that is induced in microglia after ischemia. Likewise, expression of inducible nitric oxide synthase mRNA was attenuated by 30% in minocycline-treated animals. Our results suggest that lipid-soluble tetracyclines, doxycycline and minocycline, inhibit inflammation and are neuroprotective against ischemic stroke, even when administered after the insult. Tetracycline derivatives may have a potential use also as antiischemic compounds in humans.
Resumo:
Angiogenesis is activated during multistage tumorigenesis prior to the emergence of solid tumors. Using a transgenic mouse model, we have tested the proposition that treatment with angiogenesis inhibitors can inhibit the progression of tumorigenesis after the switch to the angiogenic phenotype. In this model, islet cell carcinomas develop from multifocal, hyperproliferative nodules that show the histological hallmarks of human carcinoma in situ. Mice were treated with a combination of the angiogenesis inhibitor AGM-1470 (TNP-470), the antibiotic minocycline, and interferon alpha/beta. The treatment regimen markedly attenuated tumor growth but did not prevent tumor formation; tumor volume was reduced to 11% and capillary density to 40% of controls. The proliferation index of tumor cells in treated and control mice was similar, whereas the apoptotic index was doubled in treated tumors. This study shows that de novo tumor progression can be restricted solely by antiangiogenic therapy. The results suggest that angiogenesis inhibitors represent a valid component of anticancer strategies aimed at progression from discrete stages of tumorigenesis and demonstrate that transgenic mouse models can be used to evaluate efficacy of candidate antiangiogenic agents.
Resumo:
Drugs to treat inflammation are discussed under the following headings: (1) random discoveries covering copper, salicylates, heterocyclic diones, ACTH, adrenal steroids and disease-modifying agents (DMARDs); these include Au(I)-thiolates, chloroquine, and hydroxychloroquine, minocycline, cyclosporin, salazopyrine, D-penicillamine and methotrexate; (2) programmed NSAID developments covering salicylates and fenamates, arylalkanoates, diones, non-acidic NSAIDs, clozic, lobenzarit and coxibs; (3) synthetic glucocorticosteroids; and (4) 'Biologicals' for neutralising pro-inflammatory cytokines. Clinical problems are highlighted, particularly unacceptable side-effects affecting the GI tract, skin, liver, etc. that caused many drugs to be withdrawn. Drug combinations may overcome some of these problems. The bibliography has selected reviews and monographs covering 50 years of publications.
Resumo:
For six decades tetracyclines have been successfully used for their broad spectrum antibiotic effects. However, non-antibiotic effects of tetracyclines have been reported. The anti-inflammatory effects of tetracycline drugs have been investigated in the context of a range of inflammatory diseases including sepsis and a number of neurodegenerative diseases. This thesis investigates the effects of a range of clinically important tetracyclines (oxytetracycline, doxycycline, minocycline and tigecycline) on the ability of the J774.2 cell line to produce nitric oxide when stimulated with the bacterial cell wall component, LPS. The proteome of J774.2 cells was analysed in response to LPS stimulation (1 µg/ml) with and without prior treatment with minocycline (50µg/ml), this allows the unbiased analysis of the cellular proteome in response to minocycline and LPS, protein spots of interest were excised and identified by nano-electrospray ionisation-linear ion trap mass spectroscopy. All of the tetracyclines that were investigated inhibited LPS-induced nitric oxide production in a dose dependent manner and this was due to the inhibition of inducible nitric oxide synthase expression. This is the first report to show that tigecycline inhibits inducible nitric oxide expression and nitric oxide production. Using two-dimensional gel electrophoresis and total protein staining eleven proteins were identified as being modulated by LPS. Of these eleven proteins; expression of some, but not all was modulated when the cells received a prior treatment with minocycline suggesting that minocycline does not completely block LPS-induced macrophage activation but probably specifically acts on particular inflammatory signaling pathways in macrophages. Three protein spots with a similar molecular weight but different pI values identified in this proteomic study were identified as ATP synthase ß chain. These different protein spots probably correspond to different phosphorylation states of the protein, suggesting that minocycline affects the balance of protein kinase and protein phosphatase activity in the immune response.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.