994 resultados para minimum branching tree
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
The lungs of small premature babies are at a developmental stage of finalizing their airway tree by a process called branching morphogenesis, and of creating terminal gas exchange units by a mechanism called septation. If the branching process is disturbed, the lung has a propensity to be hypoplastic. If septation is impaired, the terminal gas exchange units, the alveoli, tend to be enlarged and reduced in number, an entity known as bronchopulmonary dysplasia. Here, we review current knowledge of key molecules influencing branching and septation. In particular, we discuss the molecular similarities and dissimilarities between the two processes of airspace enlargement. Understanding of the molecular mechanisms regulating branching and septation may provide perinatologists with targets for improving lung growth and maturation.
Resumo:
ABSTRACTFour stands of 28-year-old radiata pine (Pinus radiata D. Don) grown in the eighth region (Biobio) of Chile were sampled to determine the effect of tree spacing on the microfibril angle. The samples were taken at two different stem levels of the tree, 2.5 m and 7.5 m, with increment strip taken in the Nothern direction. The four experimental stands were characterized by the following spacing 2x2, 2x3, 3x4 and 4x4. The microfibril angle was measured by X-ray diffraction with the SilviScan technology at the FP-Innovation-Paprican Division in Vancouver, Canada. The results showed a significant effect of tree spacing on the microfibril angle in both juvenile wood and mature wood as well as at the two stem levels considered. The minimum (9.42º) was reached in 2x2 stand at 7.5 m in mature wood, while maximum microfibril angle (24.54º) was obtained in 2x3 stand at 2.5 m in juvenile wood. Regarding the effect of tree spacing, 4x4 stand had the lowest microfibril angle,except in mature wood at 7.5 m where 4x4 had the highest microfibril angle (11°) of the four stands.
Resumo:
The present study analyzed the influence of edaphic variables on the floristic compositions and structures of the arboreal and shrub vegetation of typical cerrado (TC) and rocky outcrop cerrado (RC) communities in the Serra Negra mountain range in Piranhas Municipality, Goiás State, Brazil. Ten 20×50m plots were established in each community, and all individuals with minimum diameters ³5cm measured at 30cm above soil level were sampled. Composite soil samples were collected at 0-20cm depths in each plot for physical and chemical analyses. The proportions of above-ground rock cover work also estimated in each RC plot. A total of 2,009 individuals (83 species, 69 genera, and 34 families) were recorded. Qualea parviflora was the only species consistently among the 10 most structurally important taxa in both communities, and was considered a generalist species. The observed and estimated species richnesses were greater in RC than in TC, although plant basal areas and heights did not differ between them. There were positive correlations between rock cover×plant density and rock cover×basal areas. TWINSPAN and PCA analysis separated the TC and RC plots, and three RC habitat specialist species (Wunderlichia mirabilis, Norantea guianensis, and Tibouchina papyrus) were identified. Soil variables were found to have greater effects on the species compositions of the TC and RC sites than the geographic distances between sampling plots. According to CCA analysis, the exclusive (or more abundant species) of each community were correlated with soil variables, and these variables therefore determined the selection of some species and influenced the differentiation of the vegetation structures of the communities studied.
Resumo:
This study was designed to determine the response of in vitro fermentation parameters to incremental levels of polyethylene glycol (PEG) when tanniniferous tree fruits (Dichrostachys cinerea, Acacia erioloba, A. erubiscens, A. nilotica and Piliostigma thonningii) were fermented using the Reading Pressure Technique. The trivalent ytterbium precipitable phenolics content of fruit substrates ranged from 175 g/kg DM in A. erubiscens to 607 g/kg DM in A. nilotica, while the soluble condensed tannin content ranged from 0.09 AU550nm/40mg in A. erioloba to 0.52 AU550nm/40 mg in D. cinerea. The ADF was highest in P. thonningii fruits (402 g/kg DM) and lowest in A. nilotica fruits (165 g/kg DM). Increasing the level of PEG caused an exponential rise to a maximum (asymptotic) for cumulative gas production, rate of gas production and nitrogen degradability in all substrates except P. thonningii fruits. Dry matter degradability for fruits containing higher levels of soluble condensed tannins (D. cinerea and P. thonningii), showed little response to incremental levels of PEG after incubation for 24 h. The minimum levels of PEG required to maximize in vitro fermentation of tree fruits was found to be 200 mg PEG/g DM of sample for all tree species except A. erubiscens fruits, which required 100 mg PEG/g DM sample. The study provides evidence that PEG levels lower than 1 g/g DM sample can be used for in vitro tannin bioassays to reduce the cost of evaluating non-conventional tanniniferous feedstuffs used in developing countries in the tropics and subtopics. The use of in vitro nitrogen degradability in place of the favoured dry matter degradability improved the accuracy of PEG as a diagnostic tool for tannins in in vitro fermentation systems.
Resumo:
Rudgea jasminoides (Rubiaceae) is a tropical tree species native of the Atlantic Forest in the south of Brazil. Previous studies with leaf cell walls of R. jasminoides showed a different proportion of cross-linked glycans compared to what is usually reported for eudicots. However, due to the difficulties of working with whole plant organs, cell suspensions of R. jasminoides, consisting of predominantly undifferentiated cells with mainly primary cell walls, were used to examine cell walls and extracellular soluble polysaccharides (EP) released into the culture medium. Sugar composition and linkage analysis showed homogalacturonans, xylogalacturonans and arabinogalactans to be the predominant EP. In the cell wall, homogalacturonans and arabinogalactans are the major pectins, and xyloglucans and xylans are the major cross-linking glycans. The presence of xylogalacturonans in the R. jasminoides cell cultures seems to be related to the occurrence of a homogeneous cell suspension with loosely attached cells. Although all alkali extractions from the cell walls yielded amounts of xyloglucan that exceed those of the xylans, the latter was found in a proportion that is higher than what has been usually reported for primary cell walls of most eudicots. The xyloglucan from cell walls of cell suspension cultures of R. jasminoides has low fucosylation levels and high proportion of galactosyl residues, a branching pattern commonly found in storage cell-wall xyloglucans.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper describes the reproductive phenorhythms of tree species in a tropical seasonal lowland forest in Southeastern Brazil. Every two weeks, five individuals of 41 species were observed for the occurrence of flowering and fruiting, from May 1982 to December 1992. All phenophases showed high seasonality, when considering the whole set of species, but the amplitude of the cycles was much more variable between years; only 13 species had regular flowering. Infra-annual flowering and fruiting were found in 11 and four species, respectively, while only one species flowered and fruited continually. Supra-annual cycles were observed in four (flowering) and seven (fruiting) species. An increase was observed in number of species and individuals flowering and fruiting from 1990 to 1992, following mainly an elevation in the absolute minimum air temperature. These data suggest a relationship between reproductive phenology and major climatic phenomena like El Niño events and solar activity cycles. © International Society for Tropical Ecology.
Resumo:
All trees with diameter at breast height dbh >= 10.0 cm were stem-mapped in a "terra firme" tropical rainforest in the Brazilian Amazon, at the EMBRAPA Experimental Site, Manaus, Brazil. Specifically, the relationships of tree species with soil properties were determined by using canonical correspondence analyses based on nine soil variables and 68 tree species. From the canonical correspondence analyses, the species were grouped into two groups: one where species occur mainly in sandy sites, presenting low organic matter content; and another one where species occur mainly in dry and clayey sites. Hence, we used Ripley's K function to analyze the distribution of species in 32 plots ranging from 2,500 m(2) to 20,000 m(2) to determine whether each group presents some spatial aggregation as a soil variations result. Significant spatial aggregation for the two groups was found only at over 10,000 m(2) sampling units, particularly for those species found in clayey soils and drier environments, where the sampling units investigated seemed to meet the species requirements. Soil variables, mediated by topographic positions had influenced species spatial aggregation, mainly in an intermediate to large distances varied range (>= 20 m). Based on our findings, we conclude that environmental heterogeneity and 10,000 m(2) minimum sample unit sizes should be considered in forest dynamic studies in order to understand the spatial processes structuring the "terra firme" tropical rainforest in Brazilian Amazon.
Resumo:
Smoke spikes occurring during transient engine operation have detrimental health effects and increase fuel consumption by requiring more frequent regeneration of the diesel particulate filter. This paper proposes a decision tree approach to real-time detection of smoke spikes for control and on-board diagnostics purposes. A contemporary, electronically controlled heavy-duty diesel engine was used to investigate the deficiencies of smoke control based on the fuel-to-oxygen-ratio limit. With the aid of transient and steady state data analysis and empirical as well as dimensional modeling, it was shown that the fuel-to-oxygen ratio was not estimated correctly during the turbocharger lag period. This inaccuracy was attributed to the large manifold pressure ratios and low exhaust gas recirculation flows recorded during the turbocharger lag period, which meant that engine control module correlations for the exhaust gas recirculation flow and the volumetric efficiency had to be extrapolated. The engine control module correlations were based on steady state data and it was shown that, unless the turbocharger efficiency is artificially reduced, the large manifold pressure ratios observed during the turbocharger lag period cannot be achieved at steady state. Additionally, the cylinder-to-cylinder variation during this period were shown to be sufficiently significant to make the average fuel-to-oxygen ratio a poor predictor of the transient smoke emissions. The steady state data also showed higher smoke emissions with higher exhaust gas recirculation fractions at constant fuel-to-oxygen-ratio levels. This suggests that, even if the fuel-to-oxygen ratios were to be estimated accurately for each cylinder, they would still be ineffective as smoke limiters. A decision tree trained on snap throttle data and pruned with engineering knowledge was able to use the inaccurate engine control module estimates of the fuel-to-oxygen ratio together with information on the engine control module estimate of the exhaust gas recirculation fraction, the engine speed, and the manifold pressure ratio to predict 94% of all spikes occurring over the Federal Test Procedure cycle. The advantages of this non-parametric approach over other commonly used parametric empirical methods such as regression were described. An application of accurate smoke spike detection in which the injection pressure is increased at points with a high opacity to reduce the cumulative particulate matter emissions substantially with a minimum increase in the cumulative nitrogrn oxide emissions was illustrated with dimensional and empirical modeling.
Resumo:
The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.
Resumo:
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.