868 resultados para min-max shadow maps


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction - Knowledge on the metabolic changes and nutritional needs during the postsurgical anabolic phase in infants is scarce. This analysis explores the associations of resting energy expenditure (REE) and macronutrient utilization with body composition of full-term infants, during catch-up growth after corrective surgery of major congenital anomalies. Methods - A cohort of full-term appropriate for-gestational-age neonates subjected to corrective surgery of major congenital anomalies were recruited after gaining weight for at least one week. REE and macronutrient utilization, measured by respiratory quotient (RQ), were assessed by indirect calorimetry using the Deltatrac II Metabolic Monitor ®. Body composition, expressed as fat-free mass (FFM), fat mass (FM) and adiposity defined as percentage of FM (% FM), was measured by air displacement plethysmography using the Pea Pod ®. Results - Four infants were included at 3 to 5 postnatal weeks. Recommended energy and macronutrient intakes for healthy term infants were provided. Through the study, the median (min-max) REE (Kcal/Kg FFM/d) was 70.8 (60.6-96.1) and RQ was 0.99 (0.72-1.20). Steady increases in both body weight and FFM were associated with initial decrease in FM and adiposity followed by their increase. Low RQ preceded decrease in adiposity. Conclusion - The marked adiposity depletion, not expected during steady weight gain in the postsurgical period, prompts us to report this finding. The subsequent adiposity catch-up was associated with relatively high REE and RQ, suggesting preferential oxidation of carbohydrates and preservation of lipids for fat storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series of commercial landings from the Algarve (southern Portugal) from 1982 to 1999 were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These techniques were used to identify trends and explore the relationships between the response variables (annual landings of 12 species) and explanatory variables [sea surface temperature, rainfall, an upwelling index, Guadiana river (south-east Portugal) flow, the North Atlantic oscillation, the number of licensed fishing vessels and the number of commercial fishermen]. Landings were more highly correlated with non-lagged environmental variables and in particular with Guadiana river flow. Both techniques gave coherent results, with the most important trend being a steady decline over time. A DFA model with two explanatory variables (Guadiana river flow and number of fishermen) and three common trends (smoothing functions over time) gave good fits to 10 of the 12 species. Results of other models indicated that river flow is the more important explanatory variable in this model. Changes in the mean flow and discharge regime of the Guadiana river resulting from the construction of the Alqueva dam, completed in 2002, are therefore likely to have a significant and deleterious impact on Algarve fisheries landings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for nonnegative matrices A and C. We present a local algorithm (constant-time distributed algorithm) for approximating max-min LPs. The approximation ratio of our algorithm is the best possible for any local algorithm; there is a matching unconditional lower bound.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor reading in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.