936 resultados para microwave heating


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developing temperature fields in frozen cheese sauce undergoing microwave heating were simulated and measured. Two scenarios were investigated: a centric and offset placement on the rotating turntable. Numerical modeling was performed using a dedicated electromagnetic Finite Difference Time Domain (FDTD) module that was two-way coupled to the PHYSICA multiphysics package. Two meshes were used: the food material and container were meshed for the heat transfer and the microwave oven cavity and waveguide were meshed for the microwave field. Power densities obtained on the structured FDTD mesh were mapped onto the unstructured finite volume method mesh for each time-step/turntable position. On heating for each specified time-step the temperature field was mapped back onto the FDTD mesh and the electromagnetic properties were updated accordingly. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Detailed comparisons were carried out for the centric and offset placements, comparing experimental temperature profiles during microwave thawing with those obtained by numerical simulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thawing of a frozen food product in a domestic microwave oven is numerically simulated using a coupled solver approach. The approach consists of a dedicated electromagnetic FDTD solver and a closely coupled UFVM multi-physics package. Two overlapping numerical meshes are defined; the food material and container were meshed for heat transfer and phase change solution, whilst the microwave oven cavity and waveguide were meshed for the microwave irradiation. The two solution domains were linked using a cross-mapping routine. This approach allowed the rotation of the food load to be captured. Power densities obtained on the structured FDTD mesh were interpolated onto the UFVM mesh for each timestep/turntable position. The UFVM solver utilised the power density data to advance the temperature and phase distribution solution. The temperature-dependant dielectric and thermo-physical properties of the food load were updated prior to revising the electromagnetic solution. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Two scenarios were investigated: a centric and eccentric placement on the turntable. Developing temperature fields predicted by the numerical solution are validated against experimentally obtained data. Presented results indicate the feasibility of fully coupled simulations of the microwave heating of a frozen product. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The curing of a thermosetting polymer materials utilized on micro-electronics packaging applications can be performed using microwave systems. The use of microwave energy enables the cure process to be completed more rapidly than with alternative approaches due to the ability to heat volumetrically. Furthermore, advanced dual-section microwave systems enable curing of individual components on a chip-on-board assembly. The dielectric properties of thermosetting polymer materials, commonly used in microelectronics packaging applications, vary significantly with temperature and degree of cure. The heating rate within a material subjected to an electric field is primarily dependant on the dielectric loss properties of the material itself. This article examines the variation in dielectric properties of a commercially available encapsulant paste with frequency and temperature and the resulting influence on the cure process. The 'FAMOBS' dual section microwave system and its application to microelectronics manufacture are described. The measurement of the dielectric properties of 'Henkel EO1080' encapsulant paste uses a commercially available 'dielectric probe kit' and is described in this paper. The FAMOBS heating system is used to encapsulate a small op-amp chip. A numerical model formulated to assess the cure process in thermosetting polymer materials under microwave heating is outlined. Numerical results showing that the microwave processing systems is capable of rapidly and evenly curing thermosetting polymer materials are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microwave processing of materials is numerically simulated using a coupled solver approach. Microwave heating is a complex coupled process due to the variation in dielectric properties during heating. The effects of heating an object in a electromagnetic field directly influence the manner in which it interacts with the field. Simplifying assumptions and empirical solutions do not capture the fundamental physics involved and, in general, do not provide usefully accurate solutions in a number of practical problems. In order to capture the underlying processes involved in microwave heating, the problem must be looked at in a holistic manner rather than a number of discrete processes. This contribution outlines a coupled-solver multiphysics analysis approach to the solution of practical microwave heating problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reaction of 1-butylpyrrolidine with dimethyl carbonate to yield the ionic liquid precursor, 1-butyl-1-methylpyrrolidinium methylcarbonate, has been investigated under microwave heating conditions and the reaction parameters optimised to achieve 100% yield of the pyrrolidinium salt with no by-products in under 1 h. The reactions of tributylamine, trioctylphosphine, and 1-butylimidazole with dimethyl carbonate under comparable conditions have also been evaluated, yielding the corresponding methylcarbonate salts which can be used as intermediates for the preparation of halide-free ionic liquids without generating any undesirable salt wastes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microwave heating reduces the preparation time and improves the adsorption quality of activated carbon. In this study, activated carbon was prepared by impregnation of palm kernel fiber with phosphoric acid followed by microwave activation. Three different types of activated carbon were prepared, having high surface areas of 872 m2 g-1, 1256 m2 g-1, and 952 m2 g-1 and pore volumes of 0.598 cc g-1, 1.010 cc g-1, and 0.778 cc g-1, respectively. The combined effects of the different process parameters, such as the initial adsorbate concentration, pH, and temperature, on adsorption efficiency were explored with the help of Box-Behnken design for response surface methodology (RSM). The adsorption rate could be expressed by a polynomial equation as the function of the independent variables. The hexavalent chromium adsorption rate was found to be 19.1 mg g-1 at the optimized conditions of the process parameters, i.e., initial concentration of 60 mg L-1, pH of 3, and operating temperature of 50 oC. Adsorption of Cr(VI) by the prepared activated carbon was spontaneous and followed second-order kinetics. The adsorption mechanism can be described by the Freundlich Isotherm model. The prepared activated carbon has demonstrated comparable performance to other available activated carbons for the adsorption of Cr(VI).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Usage of a dielectric multilayer around a dielectric Sample is studied as a means for improving the efficiency in multimode microwave- heating cavities. The results show that by using additional dielectric constant layers the appearance of undesired reflections at the sample-air interface is avoided and higher power -absorption rates within the sample and high -efficiency designs are obtained

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS-ET), but we have elected the following as our first choice: 2.5-fold molar excess of 0.04-0.08 M Boc or Fmoc-amino acid derivative, equimolar amount of DIC/HOBt (1:1)or TBTU/DIPEA(1:3), 25% DMSO/toluene, 60 degrees C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave-SPPS, peptides containing L-Ser, L-His, L-Cys and/or L-Met were manually synthesized traditionally, at 60 degrees C using conventional heating and at 60 degrees C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave-assisted coupling of L-Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 degrees C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave-assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS-ET and suggests alternative conditions for microwave-assisted SPPS. Copyright (C) 2009 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Statement of problem. Microwave irradiation has been suggested as a method to disinfect denture bases. However, the effect of microwave heating on the dimensional stability of the relined denture bases is unknown.Purpose. The purpose of this study was to evaluate the dimensional stability of intact and relined acrylic resin denture bases after microwave disinfection.Material and methods. A standard brass cast simulating an edentulous maxillary arch was machined and used to fabricate 2- and 4-mm-thick denture bases (n=200), which were processed with heat-polymerized acrylic resin (Lucitone 550). The 2-mm thick-specimens (n=160) were relined with 2 mm of autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Distances between 5 removable pins on the standard brass cast were measured with a Nikon optical comparator, and the area (mm(2)) formed by the distance between 5 pins was calculated and served as baseline. During fabrication, the pins were transferred to the intaglio surface of the specimens. Differences between the baseline area and those subsequently determined for the specimens were used to calculate the percent dimensional changes. The intact and relined denture bases were divided into 4 groups (n=10) and evaluated after: polymerization (control group P); 1 cycle of microwave disinfection (MW); daily microwave disinfection for 7 days (control group MW7); water storage for 7 days (WS7). Microwave irradiation was performed for 6 minutes at 650 W. Data were analyzed using 2-way ANOVA followed by Tukey's test (alpha=.05).Results. Intact specimens and those relined with Kooliner and New Truliner showed increased shrinkage after 1 (P=.05, .018, and .001, respectively) and 7 (P <.001, .003, and <.001, respectively) cycles of microwave disinfection. With the exception of specimens relined with Kooliner, intact specimens showed greater shrinkage than the relined specimens after 7 cycles of microwave disinfection.Conclusions. Microwave disinfection produced increased shrinkage of intact specimens and those relined with New Truliner and Kooliner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microwave energy has proved to be an effective method for disinfecting acrylic dentures. However, the effect of microwave heating on the porosity of autopolymerising denture reline resins has not been investigated.The purpose of the study was to determine the effect of microwave disinfection on the porosity of autopolymerised denture reline materials (Kooliner-K, New Truliner-NT, Tokuso Rebase Fast-TR and Ufi Gel Hard-UGH) and a conventional heat-polymerised denture base resin (Lucitone 550-L).Specimens (10 mm x 20 mm x 1 mm) were obtained from the impression surface of the palatal mucosa in a single person and divided into four groups (n = 5). The porosity was evaluated after polymerisation (C1), after two cycles of microwave disinfection (MW2), after seven cycles of microwave disinfection (MW7) and after 7 days storage in water at 37 degrees C (C2). Specimens from group MW7 were exposed to microwave disinfection daily being stored in water at 37 degrees C between exposures. All the replicas were sputter coated with gold and micrographs/digital images were taken of each replica using scanning electron microscopy at magnification x 100. The SEM micrographs were then examined using an image analyser to determine the number of pores. Comparison between materials and groups were made using Kruskal-Wallis tests.MW7 resulted in a significant increase in the number from the pores of material K, but decreased in number in reline material TR and UGH reline resin. The number of pores in materials NT and L remained unaffected following microwave disinfection.Differences in the porosity amongst the materials and for different experimental conditions were observed following microwave disinfection.