990 resultados para microscopic structure of plant organs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of dwindling petroleum reserves and population growth make the development of renewable energy and chemical resources more pressing than ever before. Plant biomass is the most abundant renewable source for energy and chemicals. Enzymes can selectively convert the polysaccharides in plant biomass into simple sugars which can then be upgraded to liquid fuels and platform chemicals using biological and/or chemical processes. Pretreatment is essential for efficient enzymatic saccharification of plant biomass and this article provides an overview of how organic solvent (organosolv) pretreatments affect the structure and chemistry of plant biomass, and how these changes enhance enzymatic saccharification. A comparison between organosolv pretreatments utilizing broadly different classes of solvents (i.e., low boiling point, high boiling point, and biphasic) is presented, with a focus on solvent recovery and formation of by-products. The reaction mechanisms that give rise to these by-products are investigated and strategies to minimize by-product formation are suggested. Finally, process simulations of organosolv pretreatments are compared and contrasted, and discussed in the context of an industrial-scale plant biomass to fermentable sugar process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are two recognized forms of the disease net blotch of barley: the net form caused by Pyrenophora teres f. teres (PTT) and the spot form caused by P. teres f. maculata (PTM). In this study, amplified fragment length polymorphism analysis was used to investigate the genetic diversity and population structure of 60 PTT and 64 PTM isolates collected across Australia (66 isolates) and in the south-western Cape of South Africa (58 isolates). For comparison, P. tritici-repentis, Exserohilum rostratum and Bipolaris sorokiniana samples were also included in the analyses. Both distance-and model-based cluster analyses separated the PTT and PTM isolates into two strongly divergent genetic groups. Significant variation was observed both among the South African and Australian populations of PTT and PTM and among sampling locations for the PTT samples. Results suggest that sexual reproduction between the two forms is unlikely and that reproduction within the PTT and PTM groups occurs mainly asexually.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spring barley is the most important crop in Finland based on cultivated land area. Net blotch, a disease caused by Pyrenophora teres Drech., is the most damaging disease of barley in Finland. The pressure to improve the economics and efficiency of agriculture has increased the need for more efficient plant protection methods. Development of durable host-plant resistance to net blotch is a promising possibility. However, deployment of disease resistant crops could initiate selection pressure on the pathogen (P. teres) population. The aim of this study was to understand the population biology of P. teres and to estimate the evolutionary potential of P. teres under selective pressure following deployment of resistance genes and application of fungicides. The study included mainly Finnish P. teres isolates. Population samples from Russia and Australia were also included. Using AFLP markers substantial genotypic variation in P. teres populations was identified. Differences among isolates were least within Finnish fields and significantly higher in Krasnodar, Russia. Genetic differentiation was identified among populations from northern Europe and from Australia, and between the two forms P. teres f. teres (PTT, net form of net blotch) and P. teres f. maculata (PTM, spot form of net blotch) in Australia. Differentiation among populations was also identified based on virulence between Finnish and Russian populations, and based on prochloraz (fungicide) tolerance in the Häme region in Finland. Surprisingly only PTT was recovered from Finland and Russia although both forms were earlier equally common in Finland. The reason for the shift in occurrence of forms in Finland remained uncertain. Both forms were found within several fields in Australia. Sexual reproduction of P. teres was supported by recover of both mating types in equal ratio in those areas although the prevalence of sexual mating seems to be less in Finland than in Australia. Population from Krasnodar was an exception since only one mating type was found in there. Based on the substantial high genotypic variation in Krasnodar it was suggested go represent an old P. teres population, whereas the Australian samples were suggested to represent newer populations. In conclusion, P. teres populations are differentiated at several levels. Human assistance in dispersal of P. teres on infected barley seed is obvious and decreases the differentiation among populations. This can increase the plant protection problems caused by this pathogen. P. teres is capable of sexual reproduction in several areas but the prevalence varies. Based on these findings it is apparent that P. teres has the potential to pose more serious problems in barley cultivation if plant protection is neglected. Therefore, good agricultural practices, including crop rotation and the use of healthy seed, are recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coat protein of belladonna mottle virus (a tymovirus) was cleaved by trypsin and chymotrypsin, and the peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase, and ion pair chromatography. The peptides were sequenced manually using the 4-N, N-dimethylaminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double-coupling method. The chymotryptic peptides were aligned by overlapping sequences of tryptic peptides and by homology with another tymovirus, eggplant mosaic virus. The belladonna mottle virus is more closely related to eggplant mosaic virus than to turnip yellow mosaic virus, the type member of this group, as evident from the sequence homologies of 57 and 32%, respectively. The accumulation of basic residues at the amino terminus implicated in RNA-protein interactions in many spherical plant viruses was absent in all the three sequences. Interestingly, the amino-terminal region is the least conserved among the tymoviruses. The longest stretch of conserved sequence between belladonna mottle virus and eggplant mosaic virus was residues 34-44, whereas it was residues 96-102 in the case of belladonna mottle virus and turnip yellow mosaic virus. A tetrapeptide in the region (residues 154-157) was found to be common for all the three sequences. It is possible that these conserved regions (residues 34-44, 96-102, 154-157) are involved in either intersubunit or RNA-protein interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron microscopic investigations have been carried out on superconducting YBa2Cu3 O7−δ, NdBa2Cu3 O7−δ and related oxides. All these orthorhombic oxides exhibit twin domains. Based on high resolution electron microscopy, it is shown that there is no significant change in the structure across the twins. Oxides of the La2−x Sr x (Ba x )CuO4 system do not show twins, but exhibit other types of defects. Twins appear to be characteristic of only the orthorhombic 123 structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamines are some of the most important and ubiquitous small molecules that modulate several functions of plant, animal and bacterial cells. Despite the simplicity of their chemical structure, their specific interactions with other biomolecules cannot be explained solely on the basis of their electrostatic properties. To evolve a structural understanding on the specificity of these interactions it is necessary to determine the structure of complexes of polyamines with other, representative biomolecules. This paper reports the structure of the 1:2 complex of hexanediamine and L-glutamic acid. The complex crystallizes in the monoclonic space group P2(1) with a = 5.171(1) angstrom, b = 22.044(2) angstrom, c = 10.181(2) angstrom and beta = 104.51(1)-degrees. The structure was refined to an R factor of 6.6%. The structures of these complexes not only suggest the importance of hydrogen-bonding interactions of polyamines but also provide some insight into other complementary interactions probably important for the specificity of biomolecular interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinctive feature of single-layer graphene is the linearly dispersive energy bands, which in the case of multilayer graphene become parabolic. A simple electrical transport-based probe to differentiate between these two band structures will be immensely valuable, particularly when quantum Hall measurements are difficult, such as in chemically synthesized graphene nanoribbons. Here we show that the flicker noise, or the 1/f noise, in electrical resistance is a sensitive and robust probe to the band structure of graphene. At low temperatures, the dependence of noise magnitude on the carrier density was found to be opposite for the linear and parabolic bands. We explain our data with a comprehensive theoretical model that clarifies several puzzling issues concerning the microscopic origin of flicker noise in graphene field-effect transistors (GraFET).