144 resultados para microfluidics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we measured 14 horizontal velocity profiles along the vertical direction of a rectangular microchannel with aspect ratio alpha = h/w = 0.35 (h is the height of the channel and w is the width of the channel) using microPIV at Re = 1.8 and 3.6. The experimental velocity profiles are compared with the full 3D theoretical solution, and also with a Poiseuille parabolic profile. It is shown that the experimental velocity profiles in the horizontal and vertical planes are in agreement with the theoretical profiles, except for the planes close to the wall. The discrepancies between the experimental data and 3D theoretical results in the center vertical plane are less than 3.6%. But the deviations between experimental data and Poiseuille's results approaches 5%. It indicates that 2D Poiseuille profile is no longer a perfect theoretical approximation since a = 0.35. The experiments also reveal that, very near the hydrophilic wall (z = 0.5-1 mu m), the measured velocities are significantly larger than the theoretical velocity based on the no-slip assumption. A proper discussion on some physical effects influencing the near wall velocity measurement is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths which cannot be obtained by molecular dynamics simulation alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

飞秒激光微加工技术具有加工精度高、热效应小、损伤阈值低以及能够实现真正的三维微结构加工等优点,这些特性是传统的激光加工技术所无法取代的。首先回顾了激光微加工和超短脉冲激光技术的发展历史,然后介绍超短脉冲激光与金属和介质材料相互作用的机制,接着阐述了飞秒激光直写、干涉和投影制备等各种加工方法的原理,重点讨论飞秒激光在三维光子器件集成、微流体芯片制备及其在生化传感方面的应用等,最后展望了飞秒激光微加工领域所面临的机遇和挑战,指出了未来的研究方向。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.

Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.

Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.

Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computation technology has dramatically changed the world around us; you can hardly find an area where cell phones have not saturated the market, yet there is a significant lack of breakthroughs in the development to integrate the computer with biological environments. This is largely the result of the incompatibility of the materials used in both environments; biological environments and experiments tend to need aqueous environments. To help aid in these development chemists, engineers, physicists and biologists have begun to develop microfluidics to help bridge this divide. Unfortunately, the microfluidic devices required large external support equipment to run the device. This thesis presents a series of several microfluidic methods that can help integrate engineering and biology by exploiting nanotechnology to help push the field of microfluidics back to its intended purpose, small integrated biological and electrical devices. I demonstrate this goal by developing different methods and devices to (1) separate membrane bound proteins with the use of microfluidics, (2) use optical technology to make fiber optic cables into protein sensors, (3) generate new fluidic devices using semiconductor material to manipulate single cells, and (4) develop a new genetic microfluidic based diagnostic assay that works with current PCR methodology to provide faster and cheaper results. All of these methods and systems can be used as components to build a self-contained biomedical device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within microfluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for biosensing parasites in their hosts, showing the newest opportunities offered by modern “-omics” and platforms for parasite detection and control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lab-on-a-chip (LOC) is one of the most important microsystem applications with promise for use in microanalysis, drug development, diagnosis of illness and diseases etc. LOC typically consists of two main components: microfluidics and sensors. Integration of microfluidics and sensors on a single chip can greatly enhance the efficiency of biochemical reactions and the sensitivity of detection, increase the reaction/detection speed, and reduce the potential cross-contamination, fabrication time and cost etc. However, the mechanisms generally used for microfluidics and sensors are different, making the integration of the two main components complicated and increases the cost of the systems. A lab-on-a-chip system based on a single surface acoustic wave (SAW) actuation mechanism is proposed. SAW devices were fabricated on nanocrystalline ZnO thin films deposited on Si substrates using sputtering. Coupling of acoustic waves into a liquid induces acoustic streaming and motion of droplets. A streaming velocity up to ∼ 5cm/s and droplet pumping speeds of ∼lcm/s were obtained. It was also found that a higher order mode wave, the Sezawa wave is more effective in streaming and transportation of microdroplets. The ZnO SAW sensor has been used for prostate antigen/antibody biorecognition systems, demonstrated the feasibility of using a single actuation mechanism for lab-on-a-chip applications. © 2010 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows that film bulk acoustic resonator (FBAR) arrays can be very useful sensors either to detect physical parameters such as temperature and pressure directly or to detect bio-chemicals with extremely high sensitivities by incorporating a chemisorption layer or bio-probe molecules. Furthermore, it also shows that surface acoustic wave devices can be integrated with a FBAR sensor array on the same piezoelectric substrate as the microfluidics systems to perform transportation and mixing of biosamples etc. demonstrating the possibility to fabricate integrated lab-on-a-chip detection systems, in which all the actuators and sensors are operated by acoustic wave devices. This makes the detection system simple, low cost and easy to operate and hence has great commercial potential. © 2011 Inderscience Enterprises Ltd.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic wave devices were fabricated incorporating ZnO films deposited using both a standard rf magnetronand a novel High Target Utilisation (HiTUS) Sputtering System. Our results demonstrated the feasibility of using a single SAW-based actuation mechanism for both microfluidics and sensing. To further improve the sensitivity of our bio-sensors we have also investigated the use of Thin Film Bulk Acoustic Resonators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate modeling of gas microflow is crucial for the microfluidic devices in MEMS. Gas microflows through these devices are often in the slip and transition flow regimes, characterized by the Knudsen number of the order of 10-2∼100. An increasing number of researchers now dedicate great attention to the developments in the modeling of non-equilibrium boundary conditions in the gas microflows, concentrating on the slip model. In this review, we present various slip models obtained from different theoretical, computational and experimental studies for gas microflows. Correct descriptions of the Knudsen layer effect are of critical importance in modeling and designing of gas microflow systems and in predicting their performances. Theoretical descriptions of the gas-surface interaction and gas-surface molecular interaction models are introduced to describe the boundary conditions. Various methods and techniques for determination of the slip coefficients are reviewed. The review presents the considerable success in the implementation of various slip boundary conditions to extend the Navier-Stokes (N-S) equations into the slip and transition flow regimes. Comparisons of different values and formulations of the first- and second-order slip coefficients and models reveal the discrepancies arising from different definitions in the first-order slip coefficient and various approaches to determine the second-order slip coefficient. In addition, no consensus has been reached on the correct and generalized form of higher-order slip expression. The influences of specific effects, such as effective mean free path of the gas molecules and viscosity, surface roughness, gas composition and tangential momentum accommodation coefficient, on the hybrid slip models for gas microflows are analyzed and discussed. It shows that although the various hybrid slip models are proposed from different viewpoints, they can contribute to N-S equations for capturing the high Knudsen number effects in the slip and transition flow regimes. Future studies are also discussed for improving the understanding of gas microflows and enabling us to exactly predict and actively control gas slip. © Springer-Verlag 2012.