984 resultados para microbial resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bacterial strain (D38BY) belonging to the family Flavobacteriaceae and antagonistic towards an algicidal bacterium (strain S03; Flavobacteriaceae) was isolated from a culture of the red tide dinoflagellate Karenia brevis that had previously been characterized as resistant to attack by strain S03. This antagonistic bacterium increased the survival time of otherwise susceptible, bacteriafree K. brevis cultures in a concentration-dependent manner during exposure to the algicidal bacterium. Experimental evidence indicated that direct contact was required in order for strain D38BY to inhibit the killing activity of algicidal strain S03. While further work is needed to determine its precise mode of action, the antagonistic properties of strain D38BY provide further evidence that the resistance or susceptibility of certain algal taxa to algicidal attack can be more a function of interactions within the ambient microbial community than an intrinsic property of the alga.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexachlorobenzene (HCB) is a chlorinated aromatic hydrocarbon that was widely used for seed dressing in prevention of fungal growth on crops, and also as a component of fireworks, ammunition, and synthetic rubbers. Because of its resistance to degradation and mobility, HCB is widely distributed throughout the environment and is accumulated through food chains in different ecosystems. In this study, a preliminary investigation was carried out on the bioaccumulation and the toxic effects of HCB in the microbial (protozoan in particular) communities in the Fuhe River, Wuhan, a water body receiving industrial wastewaters containing HCB and other pollutants, using the standardized polyurethane foam units (PFU) method. Field samples were taken from eight stations established along the Fuhe River in January and August 2006. The concentration ratios of HCB in microbial communities and in water were 9.66-18.64, and the microbial communities accumulated 13.29-56.88 mu g/L of HCB in January and 0.82-10.25 mu g/L HCB in August. Correlation analysis showed a negative correlation between the HCB contents in the microbial assemblage, and the number of species and the diversity index of the protozoan communities. This study demonstrated the applicability of the PFU method in monitoring the effects of HCB on the level of microbial communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental microbiology investigation was carried out in Jiaozhou Bay to determine the source and distribution of tetracycline-resistant bacteria and their resistance mechanisms. At least 25 species or the equivalent molecular phylogenetic taxa in 16 genera of resistant bacteria could be identified based on 16S ribosomal deoxyribonucleic acid sequence analysis. Enterobacteriaceae, Pseudomonadaceae, and Vibrionaceae constituted the majority of the typical resistant isolates. Indigenous estuarine and marine Halomonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae, and Shewanellaceae bacteria also harbored tetracycline resistance. All the six resistance determinants screened, tet(A)-(E) and tet(G), could be detected, and the predominant genes were tet(A), tet(B), and tet(G). Both anthropogenic activity-related and indigenous estuarine or coastal bacteria might contribute to the tet gene reservoir, and resistant bacteria and their molecular determinants may serve as bioindicators of coastal environmental quality. Our work probably is the first identification of tet(E) in Proteus, tet(G) in Acinetobacter, tet(C) and tet(D) in Halomonas, tet(D) and tet(G) in Shewanella, and tet(B), tet(C), tet(E), and tet(G) in Roseobacter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptounclecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-) were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (RI) increased with increasing SRB concentration. A linear relationship between R-ct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7) cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost. and time-saving monitoring of microbial populations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our group has demonstrated that inflammatory diseases such as type 2 diabetes (DM), inflammatory bowel disease (IBD), and periodontal disease (PD) are associated with altered B cell function that may contribute to disease pathogenesis. B cells were found to be highly activated with characteristics of inflammatory cells. Obesity is a pre-disease state for cardiovascular disease and type 2 diabetes and is considered a state of chronic inflammation. Therefore, we sought to better characterize B cell function and phenotype in obese patients. We demonstrate that (Toll-like receptor) TLR4 and CD36 expression by B cells is elevated in obese subjects, suggesting increased sensing of lipopolysaccharide (LPS) and other TLR ligands. These ligands may be of microbial, from translocation from a leaky gut, or host origin. To better assess microbial ligand burden and host response in the bloodstream, we measured LPS binding protein (LBP), bacterial/permeability increasing protein (BPI), and high mobility group box 1 (HMGB1). Thus far, our data demonstrate an increase in LBP in DM and obesity indicating increased responses to TLR ligands in the blood. Interestingly, B cells responded to certain types of LPS by phosphorylating extracellular-signal-regulated kinases (ERK) 1/2. A better understanding of the immunological state of obesity and the microbial and endogenous TLR ligands that may be activating B cells will help identify novel therapeutics to reduce the risk of more dangerous conditions, such as cardiovascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense deoxyoligonucleotide (ASO) gene silencing was investigated as a potential disinfection tool for industrial and drinking water treatment application. ASOs bind with their reverse complementary mRNA transcripts thereby blocking protein translation. While ASO silencing has mainly been studied in medicine, it may be useful for modulating gene expression and inactivating microorganisms in environmental applications. In this proof of concept work, gene targets were sh ble (zeocin resistance) and todE (catechol-2,3-dioxygenase) in Pichia pastoris and npt (kanamycin resistance) in Pseudomonas putida. A maximum 0.5-fold decrease in P. pastoris cell numbers was obtained following a 120 min incubation with single-stranded DNA (ssDNA) concentrations ranging from 0.2 to 200 nM as compared to the no ssDNA control. In P. putida, a maximum 5.2-fold decrease was obtained after 90 min with 400 nM ssDNA. While the silencing efficiencies varied for the 25 targets tested, these results suggest that protein activity as well as microbial growth can be altered using ASO gene silencing-based tools. If successful, this technology has the potential to eliminate some of the environmental and health issues associated with the use of strong chemical biocides. However, prior to its dissemination, more research is needed to increase silencing efficiency and develop effective delivery methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the resistance of biodegradable biomaterials, composed of blends of poly(e-caprolactone) (PCL) and the polymeric antimicrobial complex, polyvinylpyrrolidone–iodine (PVP-I) to the adherence of a clinical isolate of Escherichia coli is described. Blends of PCL composed of a range of high (50,000 g mol1) to low (5000 g mol1) molecular weight ratios of polymer and either
devoid of or containing PVP-I (1% w/w) were prepared by solvent evaporation. Following incubation (4 h), there was no relationship between m. wt. ratio of PCL in ?lms devoid of PVP-I and adherence ofE. coli. Conversely, microbial adherence to PCL containing PVP-I decreased as the ratio of high:low m. wt. polymer was decreased and was approximately 1000 fold lower than that to comparator ?lms devoid of PVP-I. Following periods of immersion of PVP-I containing PCL ?lms under sink conditions in phosphate buffered saline, subsequent adherence of E. coli was substantially reduced for 2 days (40:60 m. wt. ratio) and 6 days (100:0 m. wt. ratio). Concurrent exposure of PCL and E. coli to sub-minimum inhibitory concentrations (sub-MIC) of PVP-I signi?cantly reduced microbial adherence to the biomaterial; however, the molecular weight ratio of PCL did not affect this outcome. Pretreatment of PCL with similar sub-MIC of PVP-I prior to inclusion within the microbial adherence assay signi?cantly decreased the subsequent adherence of E. coli. Greatest reduction in adherence was observed following treatment of PCL (40:60 m. wt. ratio) with 0.0156% w/w PVP-I. In conclusion, this study has illustrated the utility of PVP-I as a suitable therapeutic agent for incorporation within PCL as a novel biomaterial. Due to the combined antimicrobial and biodegradable properties, these biomaterials offer a promising strategy for the reduction in medical device related infection. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ohlsen K, Ternes T, Werner G, Wallner U, Löffler D, Ziebuhr W, Witte W, Hacker J. Institute for Molecular Biology of Infectious Diseases, The University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany. knut.ohlsen@mail.uni-wuerzburg.de The growing rate of microbial pathogens becoming resistant to standard antibiotics is an important threat to public health. In order to assess the role of antibiotics in the environment on the spread of resistance factors, the impact of subinhibitory concentrations of antibiotics in sewage on gene transfer was investigated using conjugative gentamicin resistance (aacA-aphD) plasmids of Staphylococcus aureus. Furthermore, the concentration of antibiotics in hospital sewage was measured by high-performance liquid chromatography (HPLC)-electrospray tandem mass spectrometry. Several antibiotics were found to be present in sewage, e.g. ciprofloxacin up to 0.051 mgl(-1) and erythromycin up to 0.027 mgl(-1). Resistance plasmid transfer occurred both on solidified (dewatered) sewage and in liquid sewage in a bioreactor with a frequency of 1.1x10(-5)-5.0x10(-8). However, low-level concentrations of antibiotics measured in sewage are below concentrations that can increase plasmid transfer frequencies of gentamicin resistance plasmids of staphylococci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466-4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of Helminthosporium solani, the cause of silver scurf in potato tubers, has been impaired by selection of benzimidazole-resistant strains as a result of repeated use of the fungicide thiabendazole. Identification of thiabendazole-resistant strains of H. solani by conventional techniques takes several weeks. Primers designed from conserved regions of the fungal beta-tubulin gene were used to PCR amplify and sequence a portion of the gene. A point mutation was detected at codon 198 in thiabendazole-resistant isolates causing a change in the amino acid sequence from glutamic acid to alanine or glutamine. Species-specific PCR primers designed to amplify this region were used in conjunction with a restriction endonuclease to cause cleavage in sensitive isolates only and thus provide a rapid diagnostic test to differentiate field isolates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Toxicologia), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals initially with a literature reference survey ,taxonomy, their incidence in selected food fishes and shellfishes, and their incidence and distribution, their survival during different types of processing, their heat survival at temperatures of 50 ,55 and 60 degree centigrade their growth initiation at different low levels of pHs(4.0 to 10) ,and their developmental resistance to various chemical agents. The trials for the study were collected from various landing centre at cochin and the retail outlets. Based on these data collections the researcher was able to obtain more knowledge of the processing technology and the survival of pathogens like salmonella and vibrio parahaemolyticus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although genome sequencing of microbial pathogens has shed light on the evolution of virulence, the drivers of the gain and loss of genes and of pathogenicity islands (gene clusters), which contribute to the emergence of new disease outbreaks, are unclear. Recent experiments with the bean pathogen Pseudomonas syringae pv. phaseolicola illustrate how exposure to resistance mechanisms acts as the driving force for genome reorganization. Here we argue that the antimicrobial conditions generated by host defences can accelerate the generation of genome rearrangements that provide selective advantages to the invading microbe. Similar exposure to environmental stress outside the host could also drive the horizontal gene transfer that has led to the evolution of pathogenicity towards both animals and plants.