158 resultados para metformin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional effects of acute and prolonged (48 h) exposure to the biguanide drug metformin were examined in the clonal pancreatic ß-cell line, BRIN-BD11. Effects of metformin on prolonged exposure to excessive increased concentrations of glucose and palmitic acid were also assessed. In acute 20-min incubations, 12.5-50 µm metformin did not alter basal (1.1 mm glucose) or glucose-stimulated (16.7 mm glucose) insulin secretion. However, higher concentrations of metformin (100-1000 µm) increased (1.3-1.5-fold; p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correction of hyperglycaemia and prevention of glucotoxicity are important objectives in the management of type 2 diabetes. Dapagliflozin, a selective sodium-glucose cotransporter-2 inhibitor, reduces renal glucose reabsorption in an insulin-independent manner. We assessed the efficacy and safety of dapagliflozin in patients who have inadequate glycaemic control with metformin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrovascular contraction and relaxation effects of metformin were measured using a Mulvany Halpern myograph. Mouse aortic ring sections were treated for 1 and 4 hours in vitro with metformin at 10-5M, and for 2, 4 and 8 weeks in vivo with metformin at 250mg/kg/day. The rings were contacted with increasing concentrations of noradrenaline (10-9M, 10-8M, 10-7M, 10-6M) in the absence and presence of metformin. Maximally contracted tissue was then relaxed using increasing acetylcholine concentrations (10-9M, 10-8M, 10-7M, 10-6M). Meformin increased the sensitivity of the aorta to noradrenaline-induced contraction. The maximal effect in vitro was seen after 4 hours giving a 221% increase in contraction after 4 hours at noradrenaline 10-6M. Acetylcholine-stimulated relaxation via endothelium also increased with metformin after 4 hours by 36.85%. The maximal effect of metformin treatment in vivo was seen on aortic contraction after 8 weeks: the effect of melformin treatment on relaxation was less marked at this time. Metformin also increased passive tension generated by the aortic vessel wall after 4 hours, which was reversed by administration of papaverine, which acts directly on vascular smooth muscle. Metformin was shown not to alter nitric oxide production by the mouse aortic wall after 1 and 4 hours in vitro. Metformin lowered basal calcium concentrations, as measured by FURA/2AM, generating a slow sustained increase in calcium release induced by noradrenaline during contraction. This research programme has shown that metformin can increase both the contraction and relaxation capabilities of aortic sections treated both in vitro and in vivo with therapeutic concentrations of metformin at 10-5M. Metformin has been shown to act directly in the vascular wall to alter vascular contractility via effects on both vascular smooth muscle and endothelium, and to influence calcium movements independently of nitric oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metformin is an effective agent with a good safety profile that is widely used as a first-line treatment for type 2 diabetes, yet its mechanisms of action and variability in terms of efficacy and side effects remain poorly understood. Although the liver is recognised as a major site of metformin pharmacodynamics, recent evidence also implicates the gut as an important site of action. Metformin has a number of actions within the gut. It increases intestinal glucose uptake and lactate production, increases GLP-1 concentrations and the bile acid pool within the intestine, and alters the microbiome. A novel delayed-release preparation of metformin has recently been shown to improve glycaemic control to a similar extent to immediate-release metformin, but with less systemic exposure. We believe that metformin response and tolerance is intrinsically linked with the gut. This review examines the passage of metformin through the gut, and how this can affect the efficacy of metformin treatment in the individual, and contribute to the side effects associated with metformin intolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Prolonged exposure of pancreatic beta-cells in vitro to the sulphonylureas tolbutamide and glibenclamide induces subsequent desensitization of insulinotropic pathways. Clinically, the insulin-sensitizing biguanide drug metformin is often administered alongside sulphonylurea as antidiabetic therapy. The present study examines the functional effects of metformin (200 µM) on tolbutamide- and glibenclamide-induced desensitisation. Methods: Acute and prolonged (18 h) effects of exposure to tolbutamide and glibenclamide alone, or in the presence of metformin, were examined in insulin-secreting BRIN-BD11 cells. Results: In acute 20 min incubations at 1.1 mM glucose, metformin increased (1.2-1.7-fold; p <0.001) the insulin-releasing actions of tolbutamide and glibenclamide. At 16.7 mM glucose, metformin significantly enhanced glibenclamide-induced insulin release at all concentrations (50-400 µM) examined, but tolbutamide-stimulated insulin secretion was only augmented at higher concentrations (300-400 µM). Exposure for 18 h to 100 µM tolbutamide or glibenclamide significantly impaired insulin release in response to glucose and a broad range of insulin secretagogues. Concomitant culture with metformin (200 µM) prevented or partially reversed many of the adverse effects on K channel dependent and independent insulinotropic pathways. Beneficial effects of metformin were also observed in cells exposed to glibenclamide for 18 h with significant improvements in the insulin secretory responsiveness to alanine, GLP-1 and sulphonylureas. The decrease of viable cell numbers observed with glibenclamide was reversed by co-culture with metformin, but cellular insulin content was depressed. Conclusions: The results suggest that metformin can prevent the aspects of sulphonylurea-induced beta-cell desensitization. © 2010 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Management of type 2 diabetes with metformin often does not provide adequate glycemic control, thereby necessitating add-on treatment. In a 24-week clinical trial, dapagliflozin, an investigational sodium glucose cotransporter 2 inhibitor, improved glycemic control in patients inadequately controlled with metformin. The present study is an extension that was undertaken to evaluate dapagliflozin as long-term therapy in this population.Methods: This was a long-term extension (total 102 weeks) of a 24-week phase 3, multicenter, randomized, placebo-controlled, double-blind, parallel-group trial. Patients were randomly assigned (1:1:1:1) to blinded daily treatment (placebo, or dapagliflozin 2.5 to 5, or 10 mg) plus open-label metformin (=1,500 mg). The previously published primary endpoint was change from baseline in glycated hemoglobin (HbA1c) at 24 weeks. This paper reports the follow-up to week 102, with analysis of covariance model performed at 24 weeks with last observation carried forward; a repeated measures analysis was utilized to evaluate changes from baseline in HbA1c, fasting plasma glucose (FPG), and weight.Results: A total of 546 patients were randomized to 1 of the 4 treatments. The completion rate for the 78-week double-blind extension period was lower for the placebo group (63.5%) than for the dapagliflozin groups (68.3% to 79.8%). At week 102, mean changes from baseline HbA1c (8.06%) were +0.02% for placebo compared with -0.48% (P = 0.0008), -0.58% (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the natural history of type 2 diabetes mellitus (T2DM), the effects of insulin resistance are compounded by progressive deterioration of the insulin-secreting pancreatic ß cells. Escalating hyperglycaemia during disease progression may, initially, be stemmed by lifestyle interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE - A 12-week study assessed the efficacy and safety of a new oral antidiabetic agent, imeglimin, as add-on therapy in type 2 diabetes patients inadequately controlled with metformin alone. RESEARCH DESIGN AND METHODS - A total of 156 patients were randomized 1:1 to receive imeglimin (1,500mg twice a day) or placebo added to a stable dose of metformin (1,500-2,000 mg/day). Change in A1C from baseline was the primary efficacy outcome; secondary outcomes included fasting plasma glucose (FPG) and proinsulin/insulin ratio. RESULTS - After 12 weeks, the placebo-subtracted decrease in A1C with metformin-imeglimin was 20.44% (P <0.001). Metformin-imeglimin also significantly improved FPG and the proinsulin/insulin ratio from baseline (20.91 mg/dL and 27.5, respectively) compared with metformin-placebo (0.36 mg/dL and 11.81). Metformin-imeglimin therapy was generally welltolerated with a comparable safety profile to metformin-placebo. CONCLUSIONS - Addition of imeglimin to metformin improved glycemic control and offers potential as a new treatment for type 2 diabetes. Copyright © 2013 by the American Diabetes Association.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metformin is an anti-hyperglycaemic agent widely used in the treatment of type 2 diabetes. It counters insulin resistance through insulin-dependent and -independent effects on cellular nutrient and energy metabolism, improving glycaemic control without weight gain and without increasing the risk of hypoglycaemia. Metformin can also benefit several risk factors for vascular disease independently of glycaemic control. In subjects with metabolic syndrome, metformin improves prognosis. It decreases progression of impaired glucose tolerance to type 2 diabetes, assists weight reduction especially in conjunction with lifestyle management and exerts other potentially favourable cardiovascular effects. For example, metformin can modestly improve the lipid profile in some dyslipidaemic individuals, reduce pro-inflammatory cytokines and monocyte adhesion molecules and decrease advanced glycation end products. Metformin can also improve parameters of endothelial function in the macro- and micro-vasculature, indicating lower athero-thrombotic risk, but it does not appear to reduce blood pressure. In normoglycaemic individuals with risk factors for diabetes and in women with polycystic ovary syndrome there is evidence that metformin can defer or prevent the development of diabetes. Thus, metformin offers beneficial effects to delay the onset and reverse or reduce the progression of many of the metabolic features and cardiovascular risk factors associated with metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple elementary osmotic pump (EOP) system that could deliver metformin hydrochloride (MT) and glipizide (GZ) simultaneously for extended periods of time was developed in order to reduce the problems associated with multidrug therapy of type 2 non-insulin-dependent diabetes mellitus. In general, both highly and poorly water-soluble drugs are not good candidates for elementary osmotic delivery. However, MT is a highly soluble drug with a high dose (500 mg) while GZ is a water-insoluble drug with a low dose (5 mg) so it is a great challenge to pharmacists to provide satisfactory extended release of MT and GZ. In this paper sodium carbonate was used to modulate the solubility of GZ within the core and MT was not only one of the active ingredients but also the osmotic agent. The optimal EOP was found to deliver both drugs at a rate of approximately zero order for up to 10 h in pH 6.8, independent of environment media. In-vivo evaluation was performed relative to the equivalent dose of conventional MT tablet and GZ tablet by a cross-study in six Beagle dogs. The EOP had a good sustained effect in comparison with the conventional product. The prototype design of the system could be applied to other combinations of drugs used for cardiovascular diseases, diabetes, etc.