833 resultados para metabolic acidosis
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Uremic syndrome, arising from kidney malfunction, consists of a set of systemic changes caused by the accumulation of toxic substances to the body. Since, with the advance of medicine, the animals lived more reaching advanced age and entering thus on track of senility, chronic renal disease, became a common complaint in the routine of the ambulatory. This high rate of morbidity generates an increased need for clarification of pathophysiology involved in this disease. The components of the uremic syndrome include water and sodium imbalance, anemia, intolerance to carbohydrate, neurological disorders, disorders of the gastrointestinal tract, osteoarthritis, immunological incompetence and metabolic acidosis. The clinical manifestations occur in isolation or in combination. In most cases canines patients are subject to an assessment when the kidney disease has evolved to the final stage with uremic syndrome and installed already, under these conditions, the prognosis is reserved
Resumo:
Diabetic ketoacidosis (DKA) is one of the most serious complications of Diabetes Mellitus (DM) in small animals (SILVA, 2006). It is an acute metabolic disorder, potentially fatal, both in humans and in dogs and cats with DM (BRUYETTE, 1997), being related, mostly, to insulin-dependent diabetics (CHASTAIN, 1981; HUME et al., 2006). DKA is a medical emergency characterized by extreme metabolic abnormalities, including hyperglycemia, metabolic acidosis, ketonemia, dehydration and electrolyte loss (MACINTIRE, 2006) and its diagnosis may be established basically by the detection of ketonuria and metabolic acidosis (NELSON, 2009). The primary purposes of the treatment of DKA are intravascular volume restoration, dehydration, acid-base and electrolyte’s imbalances correction and blood glucose concentration reduction (BOYSEN, 2008). The treatment’s success depends of the clinical status at the time of diagnosis and of the introduction of an appropriate therapy to the conditions of each patient (CHASTAIN, 1981)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Contents Among the modifications that occur during the neonatal period, pulmonary development is the most critical. The neonate's lungs must be able to perform adequate gas exchange, which was previously accomplished by the placenta. Neonatal respiratory distress syndrome is defined as insufficient surfactant production or pulmonary structural immaturity and is specifically relevant to preterm newborns. Prenatal maternal betamethasone treatment of bitches at 55days of gestation leads to structural changes in the neonatal lung parenchyma and consequently an improvement in the preterm neonatal respiratory condition, but not to an increase in pulmonary surfactant production. Parturition represents an important challenge to neonatal adaptation, as the uterine and abdominal contractions during labour provoke intermittent hypoxia. Immediately after birth, puppies present venous mixed acidosis (low blood pH and high dioxide carbon saturation) and low but satisfactory Apgar scores. Thus, the combination of physiological hypoxia during birth and the initial effort of filling the pulmonary alveoli with oxygen results in anaerobiosis. As a neonatal adaptation follow-up, the Apgar analysis indicates a tachypnoea response after 1h of life, which leads to a shift in the blood acidbase status to metabolic acidosis. One hour is sufficient for canine neonates to achieve an ideal Apgar score; however, a haemogasometric imbalance persists. Dystocia promotes a long-lasting bradycardia effect, slows down Apgar score progression and aggravates metabolic acidosis and stress. The latest data reinforce the need to accurately intervene during canine parturition and offer adequate medical treatment to puppies that underwent a pathological labour.
Resumo:
DKA is a severe metabolic derangement characterized by dehydration, loss of electrolytes, hyperglycemia, hyperketonemia, acidosis and progressive loss of consciousness that results from severe insulin deficiency combined with the effects of increased levels of counterregulatory hormones (catecholamines, glucagon, cortisol, growth hormone). The biochemical criteria for diagnosis are: blood glucose > 200 mg/dl, venous pH <7.3 or bicarbonate <15 mEq/L, ketonemia >3 mmol/L and presence of ketonuria. A patient with DKA must be managed in an emergency ward by an experienced staff or in an intensive care unit (ICU), in order to provide an intensive monitoring of the vital and neurological signs, and of the patient's clinical and biochemical response to treatment. DKA treatment guidelines include: restoration of circulating volume and electrolyte replacement; correction of insulin deficiency aiming at the resolution of metabolic acidosis and ketosis; reduction of risk of cerebral edema; avoidance of other complications of therapy (hypoglycemia, hypokalemia, hyperkalemia, hyperchloremic acidosis); identification and treatment of precipitating events. In Brazil, there are few pediatric ICU beds in public hospitals, so an alternative protocol was designed to abbreviate the time on intravenous infusion lines in order to facilitate DKA management in general emergency wards. The main differences between this protocol and the international guidelines are: intravenous fluid will be stopped when oral fluids are well tolerated and total deficit will be replaced orally; if potassium analysis still indicate need for replacement, it will be given orally; subcutaneous rapid-acting insulin analog is administered at 0.15 U/kg dose every 2-3 hours until resolution of metabolic acidosis; approximately 12 hours after treatment initiation, intermediate-acting (NPH) insulin is initiated at the dose of 0.6-1 U/kg/day, and it will be lowered to 0.4-0.7 U/kg/day at discharge from hospital.
Resumo:
Although several studies on ammonia poisoning have been carried out, there is a lack of information on acid-base balance status in ammonia-poisoned cattle. Twelve crossbred steers received intraruminally 0.5 g of urea per kg of body weight in order to induce a clinical picture of ammonia poisoning. Blood samples were collected throughout the trials in order to determine the blood ammonia, lactate, and perform blood gas analysis. All cattle presented a classical clinical picture of ammonia poisoning, with a blood ammonia concentration rising progressively from the beginning until reaching higher values at 180 min (27 ± 3 to 1719 ± 101 μmol L-1), with a similar pattern occurring with blood L-lactate levels (1.7 ± 0.3 to 26.0 ± 1.7 mmol L-1). The higher the blood ammonia concentration the higher the blood L-lactate levels (r = 0.86). All animals developed metabolic acidosis, as blood pH lowered to 7.24 0.03. The steers tried to compensate the metabolic acidosis mainly through the use of blood buffers and respiratory adjustments by lowering the pCO2 levels in the blood to 32.8 ± 2.0 mm Hg.
Resumo:
Lo sviluppo e la funzionalità della placenta influenzano direttamente la crescita ed il benessere del feto all'interno dell'utero, quindi qualsiasi problema strutturale o funzionale della placenta influenzerà lo sviluppo del feto. Lo scopo di questa tesi è stato quello di approfondire diversi aspetti clinici e clinico-patologici dell’insufficienza placentare nella specie equina, con l’intento di individuare dei parametri che possano essere di ausilio per l’identificazione precoce del puledro a rischio e della necessità di interventi terapeutici. La valutazione della concentrazione di lattato nel sangue e nel liquido amniotico potrebbe essere un utile strumento diagnostico per la diagnosi di acidosi metabolica associata ad ipossia/ischemia nel puledro e per identificare la necessità di un intervento precoce alla nascita. La risposta all’ipossia sembra essere mediata dall’HIF-1 e dall’HSF-1 anche nel puledro neonato, e se questi dati venissero confermati su un numero maggiore di animali, i due marcatori proteici e la MDA potrebbero essere utilizzati per la diagnosi di PAS nel puledro. L’esame di tutta l’unità placentare riveste un ruolo di fondamentale importanza per l’acquisizione di informazioni riguardo all’ambiente di vita intrauterino del puledro, ed è quindi auspicabile nella pratica ostetrica routinaria una maggiore attenzione all’esame della placenta, soprattutto in caso di patologie materno-fetali. Tra i parametri biochimici valutati al momento della nascita, la creatininemia e la glicemia possono fornire informazioni sull’efficienza dello scambio placentare ed essere quindi utilizzati per individuare puledri a rischio. Infine, lo sviluppo di una macro per il software ImageJ porta alla luce uno strumento nuovo, semplice da usare ed economico, per la valutazione morfometrica dell’arborizzazione dei villi placentari; tuttavia la ricerca necessità ulteriori indagini su un numero maggiore di animali per valutare le differenze morfometriche tra placente normali e patologiche.
Resumo:
Topiramate, which is commonly prescribed for seizure disorders and migraine prophylaxis, sometimes causes metabolic acidosis and hypokalemia. Since the effects of topiramate on acid-base balance and potassium levels have not been well explored in children, acid-base balance, anion gap and potassium were assessed in 24 patients (8 females and 16 males) aged between 4.6 and 19 years on topiramate for more than 12 months and in an age-matched control group. Plasma bicarbonate (21.7 versus 23.4 mmol/L; P<0.03), carbon dioxide pressure (39.7 versus 43.2mm Hg; P<0.05), and potassium (3.7 versus 4.0 mmol/L; P<0.03) were on the average lower and chloride (109 versus 107 mmol/L; P<0.03) higher in patients treated with topiramate than in controls. Blood pH, plasma sodium and the anion gap were similar in patients on topiramate and in controls. In patients on topiramate no significant correlation was observed between the dosage of this agent and plasma bicarbonate or potassium as well as between topiramate blood level and the mentioned electrolytes. In conclusion long-term topiramate treatment is associated with a mild, statistically significant tendency towards compensated normal anion gap metabolic acidosis and hypokalemia.
Resumo:
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.