945 resultados para mesoporous materials


Relevância:

70.00% 70.00%

Publicador:

Resumo:

New types of templates and novel interactive mechanisms between template and framework are very important for creating porous materials. In this work, by using neutral dibutyl methylphosphonate as a template, an inorganic-organic hybrid mesoporous material, aluminum methylphosphonate, was prepared. The as-synthesized material was studied by P-31 magnetic angle spinning nuclear magnetic resonance (MAS NMR), Al-27 MAS NMR, C-13 CP/MAS, FT-IR spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), and transmission electron microscopy. After thermal treatment at 673 K and 10 mmHg for 2 h, hybrid mesoporous foam was obtained. The transformation process was investigated by FT-IR. TG-DTA results indicate that the methyl group bonded to the framework keeps intact up to 792 K under air and 823 K under nitrogen. The characterization results from nitrogen gas adsorption-desorption measurements show that the BET surface area and the Barrett-Joyner-Halenda desorption cumulative pore volume of the foam are 90 m(2) g(-1) and 0.32 cm(3) g(-1) respectively. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Much attention has been paid to carbazole derivatives for their potential applications as optical materials. For the first time, the blue-light-emitting carbazole chromophore has been covalently bonded to the ordered mesoporous SBA-15 (The resultant hybrid mesoporous materials are denoted as carbazole-SBA-15) by co-condensation of tetraethoxysilane (TEOS) and prepared compound 3-[N-3-(triethoxyilyl)propyl]ureyl-9-ethyl-carbazole (denoted as carbazole-Si) in the presence of Pluronic P123 surfactant. The results of H-1 NMR and Fourier transform infrared (FTIR) reveal that carbazole-Si has been successfully synthesized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N-2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel periodic mesoporous organosilica (PMO) material was synthesized through one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and benzoic acid-functionalized organosilane (BA-Si) using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent under basic conditions. The materials were fully characterized by FTIR, XRD, N-2 adsorption-desorption isotherms and FESEM. FTIR spectra proved that BA-Si was successfully incorporated into the PMO materials (PMOs) via benzyl group as a linker. XRD and N-2 adsorption-desorption isotherms revealed the characteristic mesoporous structure with highly uniform pore size distributions. FESEM confirmed that the morphology of the PMOs was significantly dependent cri the molar ratio of two organosilica precursors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new class of organic-inorganic hybrid porous clay heterostructures (HPCHs) have been prepared through the surfactant-directed assembly of organosilica in the galleries of montmorillonite. The reaction involved hydrolysis and condensation of phenyltriethoxysilane and tetraethoxysilane in the presence of intragallery surfactant templates (dodecylame and cetyltrimethylammonium ion). The surfactant templates were removed from the pores by solvent-extraction. The products were characterized by X-ray diffraction (XRD), N-2 adsorption, solid-state Si-29 and C-13 NMR, and FTIR. XRD patterns indicated a regular interstratification of the clay layers for HPCHs. Depending on loading of phenyl groups, HPCHs had BET surface areas of 390-771 m(2) g(-1), pore volumes of 0.3-0.59 cm(3) g(-1), and the framework pore sizes in the supermicropore to small mesopore range (1.2-2.6 nm). HPCHs were hydrophobic and acidic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The near-infrared (NIR) luminescent lanthanide ions, such as Er(III), Nd(III), and Yb(III), have been paid much attention for the potential use in the optical communications or laser systems. For the first time, the NIR-luminescent Ln(dbm)(3)phen complexes have been covalently bonded to the ordered mesoporous materials MCM-41 and SBA-15 via a functionalized phen group phen-Si (phen-Si = 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline; dbm = dibenzoylmethanate; Ln = Er, Nd, Yb). The synthesis parameters X = 12 and Y = 6 h (X denotes Ln(dbM)(3)(H2O)(2)/phen-MCM-41 molar ratio or Ln(dbM)(3)(H2O)(2)/phenSBA-15 molar ratio and Y is the reaction time for the ligand exchange reaction; phen-MCM-41 and phenSBA-15 are phen-functionalized MCM-41 and SBA-15 mesoporous materials, respectively) were selected through a systematic and comparative study. The derivative materials, denoted as Ln(dbM)(3)phen-MCM-41 and Ln(dbm)(3)phen-SBA-15 (Ln = Er, Nd, Yb), were characterized by powder X-ray diffraction, nitrogen adsorption/desorption, Fourier transform infrared (FT-IR), elemental analysis, and fluorescence spectra. Upon excitation of the ligands absorption bands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide ions through the intramolecular energy transfer from the ligands to the lanthanide ions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis and characterization of the mesoporous materials FSM-16 (folded sheets mesoporous materials) with highly ordered structure in open-vessel by using cetylpyridium bromide (CPBr) and the single-layered polysilica Kanemite as new template and silicon source, respectively, has been investigated systematically. The hexagonal arrangements of uniformly size pores were characterized by FTIR. XRD. nitrogen adsorption. TG-DTA. SEM and TEM. Especially, the porous products with higher surface areas show remarkable thermal stability up to 1000 C. The potential application as carrier of catalysts or host-guest materials is anticipated. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heteropoly acid H4SiW12O48 (denoted as SiW12) was assembled with the mesoporous materials MCM-41 modified with 3-aminopropyltriethoxysilane (APTES) (denote MCM-41((m))). The electrochemical behavior of SiW12/MCM-41((m)) complexes-based electrode indicated SiW12 anion was adsorbed by MCM-41((m)). In MCM-41((m)) electrode, large voltammetric waves, showing that the electrostatic bound ions adsorbed in MCM-41((m)) were electrochemically active. The potential application as amperometric sensors for nitrite is anticipated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thiol-functionalized mesoporous ethane-silicas with large pore were synthesized by co-condensation of 1,2-bis(trimethoxy-sily)ethane (BTME) with 3-mercaptopropyltrimethoxysilane (MPTMS) using nonionic oligomeric polymer C1H (OCH(2)-CH(2))(10)OH (Brij-76) or poly(alkylene oxide) block copolymer (P123) as surfactant in acidic medium. The results of powder X-ray diffraction (XRD), nitrogen gas adsorption, and transmission electron microscopy (TEM) show that the resultant materials have well-ordered hexagonal mesoscopic structure with uniform pore size distributions. (29)Si MAS NNR, (13)C CP-MAS NMR. FT-IR, and UV Raman spectroscopies confirm the attachment of thiol functionalities in the mesoporous ethane-sificas. The maximum content of the attached thiol group (-SH) in the mesoporous framework is 2.48mmol/g. The ordered mesoporous materials are efficient Hg(2+) adsorbents with almost every -SH site accessible to Hg(2+). In the presence of various kinds of heavy metal ions such as Hg(2+), Cd(2+), Zn(2+), Cu(2+) and Cr(3+), the materials synthesized using poly(alkylene oxide) block cooollxmier (Pluronic 123) g(2+), as surfactant show almost similar affinity to Hg(2+), Cd(2+), and Cr(3+), while the materials synthesized using ofigomeric polymer C(18)H(37)(OCH(2)CH(2))(10)OH (Brij-76) as surfactant exhibit high selectivity to Hg(2+). (C) 2004 Elsevier Inc. All rights reserved.