946 resultados para mesh opening rigidity
Resumo:
Asking why is an important foundation of inquiry and fundamental to the development of reasoning skills and learning. Despite this, and despite the relentless and often disruptive nature of innovations in information and communications technology (ICT), sophisticated tools that directly support this basic act of learning appear to be undeveloped, not yet recognized, or in the very early stages of development. Why is this so? To this question, there is no single factual answer. In response, however, plausible explanations and further questions arise, and such responses are shown to be typical consequences of why-questioning. A range of contemporary scenarios are presented to highlight the problem. Consideration of the various inputs into the evolution of digital learning is introduced to provide historical context and this serves to situate further discussion regarding innovation that supports inquiry-based learning. This theme is further contextualized by narratives on openness in education, in which openness is also shown to be an evolving construct. Explanatory and descriptive contents are differentiated in order to scope out the kinds of digital tools that might support inquiry instigated by why-questioning and which move beyond the search paradigm. Probing why from a linguistic perspective reveals versatile and ambiguous semantics. The why dimension—asking, learning, knowing, understanding, and explaining why—is introduced as a construct that highlights challenges and opportunities for ICT innovation. By linking reflective practice and dialogue with cognitive engagement, this chapter points to specific frontiers for the design and development of digital learning tools, frontiers in which inquiry may find new openings for support.
Resumo:
Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues fall into common microwells. Herein we describe the first microwell platform that incorporates a mesh to retain microtissues within discrete microwells; the microwell-mesh. We show that bonding a nylon mesh with an appropriate pore size over the microwell openings allows single cells to pass through the mesh into the microwells during the seeding process, but subsequently retains assembled microtissues within discrete microwells. To demonstrate the utility of this platform, we used the microwell-mesh to manufacture hundreds of cartilage microtissues, each formed from 5 × 10(3) bone marrow-derived mesenchymal stem/stromal cells (MSC). The microwell-mesh enabled reliable microtissue retention over 21-day cultures that included multiple full medium exchanges. Cartilage-like matrix formation was more rapid and homogeneous in microtissues than in conventional large diameter control cartilage pellets formed from 2 × 10(5) MSC each. The microwell-mesh platform offers an elegant mechanism to retain microtissues in microwells, and we believe that this improvement will make this platform useful in 3D culture protocols that require multiple medium exchanges, such as those that mimic specific developmental processes or complex sequential drug exposures.
Resumo:
The Anti-Counterfeiting Trade Agreement (ACTA) 2011 - Twitter hashtag #ACTA - is a controversial trade agreement designed to provide for stronger enforcement of intellectual property rights.
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
We have developed a general and efficient method for the stereoselective construction of pyrimidine-based pyranosyl C-2 amino acid nucleosides using NIS-mediated ring opening of 1,2-cyclopropanated sugar derivatives. This methodology has been successfully extended to the synthesis of furanosyl nucleosides, Which have potential applications in the development of novel, nontoxic antifungal therapeutics.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
Ring-opening thermal polymerization of hexachlorocyclotriphosphazene (N3P3C&h)a s been investigated at 250 "C and at 1.333-Pa pressure using chlorocyclotriphosphazenes N3P3C15(N=PPh3) and N3P3Cl,.,(NMe2), (n = 2-4), salt hydrates, triphenylphosphine, and benzoic acid as initiators. The linear poly (dich1orophosphazene) products are phenoxylated, and the phenoxy polymers are characterized by gel permeation chromatography and dilute solution viscometry. Among the various initiators investigated, CaS04.2H20b rings about a high conversion (>60%) of N3P3C&to the linear [NPC12], polymer which possesses a high molecular weight (>5 X lo6). The rationale for the choice of the initiators and possible mechanism(s) of polymerization is discussed. Several mixed substituent polymers, [NP(OPh),(OC6H4Me-p)2,1, and [NP(OPh),(OCHzCF3)2,]nh, ave been prepared and their thermal properties evaluated.
Resumo:
Mesh topologies are important for large-scale peer-to-peer systems that use low-power transceivers. The Quality of Service (QoS) in such systems is known to decrease as the scale increases. We present a scalable approach for dissemination that exploits all the shortest paths between a pair of nodes and improves the QoS. Despite th presence of multiple shortest paths in a system, we show that these paths cannot be exploited by spreading the messages over the paths in a simple round-robin manner; nodes along one of these paths will always handle more messages than the nodes along the other paths. We characterize the set of shortest paths between a pair of nodes in regular mesh topologies and derive rules, using this characterization, to effectively spread the messages over all the available paths. These rules ensure that all the nodes that are at the same distance from the source handle roughly the same number of messages. By modeling the multihop propagation in the mesh topology as a multistage queuing network, we present simulation results from a variety of scenarios that include link failures and propagation irregularities to reflect real-world characteristics. Our method achieves improved QoS in all these scenarios.
Resumo:
An experimental technique is proposed for the estimation of crack length as well as crack closure/opening stress during fatigue crack growth. A specially designed, single cantilever, crack opening displacement gauge is used to monitor these variables during fatigue crack propagation testing. The technique was experimentally validated through electronfractography.
Resumo:
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier-Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.
Resumo:
Verso: Internationale Buchkunstausstellung Leipzing 1927. Eroeffnungsfeier in der Aula der Universitaet Prof. Hugo Steiner-Prag, Praesident der Austellung und I. Vors. des Vereins "Deutsche Buchkuenstler" haelt die Festrede
Resumo:
Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.
Resumo:
An attempt is made to study the fracture behavior of ferrocement beams using J-integral and critical crack opening displacement approaches. Ferrocement beams with three different relative notch depths and different percentages of mesh reinforcement were tested in four-point bending (third-point loading). The experimental results were used to evaluate the apparent J-integral and CODc values. Results show that the apparent J-integral does not seem to follow any particular trend in variation with notch depth, but is sensitive to the increase of mesh reinforcement. Hence, the apparent J-integral appears to be a useful fracture criterion for ferrocement. The computed values of CODt are found to be dependent on the depth of notch and, thus, cannot possibly be considered as a suitable fracture criterion for ferrocement.