718 resultados para measuring device
Resumo:
Los niños y las niñas con disfunciones neurológicas tienen frecuentemente disfagia, condición que les ocasiona infecciones respiratorias a repetición, desnutrición, mala calidad de vida; su oportuno diagnóstico permite decidir sobre la mejor intervención. La videofluoroscopia y de videoendoscopia son técnicas diagnósticas invasivas, costosas y por lo tanto difíciles de hacerlas, lo que ocasiona retardo en el diagnóstico e intervención. Hoy en día existen nuevas tecnologías médicas no invasivas que pueden ser muy eficaces, una de ellas es la auscultación cervical que escucha los sonidos de la deglución mediante un estetoscopio u otro dispositivo de medición como la colocación de un micrófono o un acelerómetro en la superficie del cuello. Este método tiene como principio que los sonidos y/o movimientos biológicos normales de la deglución son diferentes de los anormales. En este artículo se presenta una revisión de la pertinencia social del diagnóstico de la disfagia, de las aplicaciones clínicas de la auscultación cervical y los dispositivos usados para realizarla, como una base para establecer su potencial de uso para la detección de disfagia en niños con problemas de neurodesarrollo. Estas orientaciones teóricas permiten al médico tener actuaciones más acertadas en el diagnóstico integral de niños y niñas con disfunción neurológica
Resumo:
A new shadow-ring device for measuring diffuse solar radiation at the surface is presented. In this device the seasonal variation of shadow is followed by moving the detector horizontally. This unique characteristic facilitates its application for long and continuous periods of time. The blocking effect caused by the ring and other related geometric properties are formulated considering the diffuse solar radiation isotropic. The correction factor, shadow size, and ring-detector distance are derived as a function of radius and width of the ring, sun position, and local latitude. The largest blocking occurs during summer, when the ring-detector distance and the shadow width are the smallest, and it is compensated by a smaller blocking effect in the winter period. The performance of the new device is verified comparing daily values of diffuse solar radiation measured simultaneously with a similar device from Kipp & Zonen, Inc. The results show a very good agreement (within 2.5%) between both devices. The new device was also able to reproduce the radiometric properties of the local atmosphere based on 3-yr-long measurements of direct solar radiation using a pyrheliometer. The new device can be applied to estimate daily values of diffuse solar radiation at the surface in the range of 30degreesN-30degreesS with results comparable to other similar apparatuses.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represent significant diagnostic challenges. SPECT/CT Image fusion can provide missing anatomical and bone structure information to functional imaging, which is particularly useful to increase diagnosis certainty of bone pathology. However, due to SPECT acquisition duration, patient’s involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We aimed at designing an ankle and foot immobilizing device and measuring its efficacy at improving image fusion. Methods: We enrolled 20 patients undergoing distal lower-limb SPECT/CT of the ankle and the foot with and without a foot holder. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomical landmarks also visible on bone scintigraphy. Analysis of variance was performed for statistical analysis. Results: The obtained absolute average difference without and with support was 5.1±5.2 mm (mean±SD) and 3.1±2.7 mm, respectively, which is significant (p<0.001). Conclusion: The introduction of the foot holder significantly decreases misalignment between SPECT and CT images, which may have clinical influence in the precise localization of foot and ankle pathology.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
The aim of this article is to measure poverty in Portugal from an absolute perspective. We estimated several absolute poverty lines and defined maximum and minimum thresholds. We applied aggregation measures to these thresholds and constructed probit models to assess the effect of some variables on poverty. The intervals obtained contain the poverty lines constructed by other approaches. We got evidence that poverty is positively correlated with the number of people in the household, with living alone; negatively correlated with the number of workers in the household, the share on non-food expenditure and the existence of a heating device at home.
Resumo:
OBJECTIVE: Home blood pressure (BP) monitoring is recommended by several clinical guidelines and has been shown to be feasible in elderly persons. Wrist manometers have recently been proposed for such home BP measurement, but their accuracy has not been previously assessed in elderly patients. METHODS: Forty-eight participants (33 women and 15 men, mean age 81.3±8.0 years) had their BP measured with a wrist device with position sensor and an arm device in random order in a sitting position. RESULTS: Average BP measurements were consistently lower with the wrist than arm device for systolic BP (120.1±2.2 vs. 130.5±2.2 mmHg, P<0.001, means±SD) and diastolic BP (66.0±1.3 vs. 69.7±1.3 mmHg, P<0.001). Moreover, a 10 mmHg or greater difference between the arm and wrist device was observed in 54.2 and 18.8% of systolic and diastolic measures, respectively. CONCLUSION: Compared with the arm device, the wrist device with position sensor systematically underestimated systolic as well as diastolic BP. The magnitude of the difference is clinically significant and questions the use of the wrist device to monitor BP in elderly persons. This study points to the need to validate BP measuring devices in all age groups, including in elderly persons.
Resumo:
Atomic force microscope is an invaluable device to explore living specimens at a nanometric scale. It permits to image the topography of the sample in 3D, to measure its mechanical properties and to detect the presence of specific molecules bound on its surface. Here we describe the procedure to gather such a data set on living macrophages.
Resumo:
The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.
Resumo:
Plants forming a rosette during their juvenile growth phase, such as Arabidopsis thaliana (L.) Heynh., are able to adjust the size, position and orientation of their leaves. These growth responses are under the control of the plants circadian clock and follow a characteristic diurnal rhythm. For instance, increased leaf elongation and hyponasty - defined here as the increase in leaf elevation angle - can be observed when plants are shaded. Shading can either be caused by a decrease in the fluence rate of photosynthetically active radiation (direct shade) or a decrease in the fluence rate of red compared with far-red radiation (neighbour detection). In this paper we report on a phenotyping approach based on laser scanning to measure the diurnal pattern of leaf hyponasty and increase in rosette size. In short days, leaves showed constitutively increased leaf elevation angles compared with long days, but the overall diurnal pattern and the magnitude of up and downward leaf movement was independent of daylength. Shade treatment led to elevated leaf angles during the first day of application, but did not affect the magnitude of up and downward leaf movement in the following day. Using our phenotyping device, individual plants can be non-invasively monitored during several days under different light conditions. Hence, it represents a proper tool to phenotype light- and circadian clock-mediated growth responses in order to better understand the underlying regulatory genetic network.