801 resultados para mathematical theories
Resumo:
Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.
Resumo:
The present article discusses units of measure and their base units, work environments built in the Units package of the computer algebra system Maple. An analysis is drawn of the tools of the application in connection with the use of physical quantities and their features. Maple’s main commands are arranged in groups depending on the function. Some applied mathematical problems are given as examples making use of derivative, integral and differential equations.
Resumo:
This article describes the approach, which allows to develop information systems without taking into consideration details of physical storage of the relational model and type database management system. Described in terms of graph model, this approach allows to construct several algorithms, for example, for verification application domain. This theory was introduced into operation testing as a part of CASE-system METAS.
Resumo:
* This paper was made according to the program No 14 of fundamental scientific research of the Presidium of the Russian Academy of Sciences, the project "Intellectual Systems Based on Multilevel Domain Models".
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
Research and development of mathematical model of optimum distribution of resources (basically financial) for maintenance of the new (raised) quality (reliability) of complex system concerning, which the decision on its re-structuring is accepted, is stated. The final model gives answers (algorithm of calculation) to questions: how many elements of system to allocate on modernization, which elements, up to what level of depth modernization of each of allocated is necessary, and optimum answers are by criterion of minimization of financial charges.
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
In this paper some current digitization projects carried out by the Mathematical Institute of Serbian Academy of Science and Arts Belgrade and the Faculty of Mathematics Belgrade are described. The projects concern developing of a virtual library of retro-digitized books and an Internet data base and presentation of electronic editions of some leading Serbian journals in science and arts, and the work on the South-Eastern European Digitization Initiative (SEEDI).
Resumo:
The paper considers the use and the information support of the most important mathematical Application Packages (AP), such as Maple, Matlab, Mathcad, Mathematica, Statistica and SPSS – mostly used during Calculus tuition in Universities. The main features of the packages and the information support in the sites of the producers are outlined, as well as their capacity for work in Internet, together with educational sites and literature related to them. The most important resources of the TeX system for preparation of mathematical articles and documents are presented.
Resumo:
The complex of questions connected with the analysis, estimation and structural-parametrical optimization of dynamic system is considered in this article. Connection of such problems with tasks of control by beams of trajectories is emphasized. The special attention is concentrated on the review and analysis of spent scientific researches, the attention is stressed to their constructability and applied directedness. Efficiency of the developed algorithmic and software is demonstrated on the tasks of modeling and optimization of output beam characteristics in linear resonance accelerators.
Resumo:
Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.