996 resultados para mathematical behavior
Resumo:
Although conventional rotating machines have been largely used to drive underground transportation systems, linear induction motors are also being considered for future applications owing to their indisputable advantages. A mathematical model for the transient behavior analysis of linear induction motors, when operating with constant r.m.s. currents, is presented in this paper. Operating conditions, like phase short-circuit and input frequency variations and also some design characteristics, such as air-gap and secondary resistivity variations, can be considered by means of this modeling. The basis of the mathematical modeling is presented. Experimental results obtained in the laboratory are compared with the corresponding simulations and discussed in this paper.
Resumo:
In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.
Resumo:
In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.
Resumo:
In this paper, we deal with the research of a proposed mathematical model of energy harvesting, including nonlinearities in the piezoelectric coupling and a non-ideal force of excitation. We showed using numerical simulations to analysis of the dynamic responses that, the power harvested was influenced by the nonlinear vibrations of the structure, as well as by the influence of the non-linearities in the piezoelectric coupling. We concluded through of the numerical results that the limited energy source was interacting with the system. Thus, the increasing of the voltage in DC motor led the system produce a good power response, especially in high-energy orbits in the resonance region, but the Sommerfeld effect occurs in the system and a chaotic behavior was found in the post-resonance region. So the power harvested along the time decreases because occurs loses of energy due the interaction between energy source and structure. Keeping the energy harvested constant over time is essential to make possible the use of energy harvesting systems in real applications. To achieve this objective, we applied a control technique in order to stabilize the chaotic system in a periodic stable orbit. We announced that the results were satisfactory and the control maintained the system in a stable condition. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
In this paper, an application is considered of both active and passive controls, to suppression of chaotic behavior of a simple portal frame, under the excitation of an unbalanced DC motor, with limited power supply (non-ideal problem). The adopted active control strategy consists of two controls: the nonlinear (feedforward) in order to keep the controlled system in a desirable orbit, and the feedback control, which may be obtained by considering state-dependent Riccati equation control to bringing the system into the desired orbit using a magneto rheological (MR) damper. To control the electric current applied in control of the MR damper the Bouc-Wen mathematical model was used to the MR damper. The passive control was obtained by means of a nonlinear sub-structure with properties of nonlinear energy sink. Simulations showed the efficiency of both the passive control (energy pumping) and active control strategies in the suppression of the chaotic behavior. © The Author(s) 2012.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K (a) and K (b). Typical values for these parameters were used, i. e., K (a) = 3.68 x 10(-5)-1.83 x 10(-4) and K (b) = 1.83 x 10(-7)-2.30 x 10(-7) s(-1). The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20-60 s(-1) and flocculation efficiencies of 50-90 % were adopted.
Resumo:
An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper shows the application of a hysteretic model for the Magnetorheological Damper (MRD) placed in the plunge degree-of-freedom of aeroelastic model of a wing. This hysteretic MRD model was developed by the researchers of the French Aerospace Lab. (ONERA) and describe, with a very good precision, the hysteretic behavior of the MRD. The aeroelastic model used in this paper do not have structural nonlinearities, the only nonlinearities showed in the model, are in the unsteady flow equations and are the same proposed by Theodorsen and Wagner in their unsteady aerodynamics theory; and the nonlinearity introduced by the hysteretic model used. The main objective of this paper is show the mathematical modeling of the problem and the equations that describes the aeroelastic response of our problem; and the gain obtained with the introduction of this hysteretic model in the equations with respect to other models that do not show the this behavior, through of pictures that represents the time response and Phase diagrams. These pictures are obtained using flow velocities before and after the flutter velocity. Finally, an open-loop control was made to show the effect of the MRD in the aeroelastic behavior.
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.
Resumo:
Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.
Resumo:
Background: Changes in heart rate during rest-exercise transition can be characterized by the application of mathematical calculations, such as deltas 0-10 and 0-30 seconds to infer on the parasympathetic nervous system and linear regression and delta applied to data range from 60 to 240 seconds to infer on the sympathetic nervous system. The objective of this study was to test the hypothesis that young and middle-aged subjects have different heart rate responses in exercise of moderate and intense intensity, with different mathematical calculations. Methods: Seven middle-aged men and ten young men apparently healthy were subject to constant load tests (intense and moderate) in cycle ergometer. The heart rate data were submitted to analysis of deltas (0-10, 0-30 and 60-240 seconds) and simple linear regression (60-240 seconds). The parameters obtained from simple linear regression analysis were: intercept and slope angle. We used the Shapiro-Wilk test to check the distribution of data and the "t" test for unpaired comparisons between groups. The level of statistical significance was 5%. Results: The value of the intercept and delta 0-10 seconds was lower in middle age in two loads tested and the inclination angle was lower in moderate exercise in middle age. Conclusion: The young subjects present greater magnitude of vagal withdrawal in the initial stage of the HR response during constant load exercise and higher speed of adjustment of sympathetic response in moderate exercise.
Resumo:
We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully understood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle ¯bers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, incorporates the phenomenology of both MCh and FA and reproduces experimental results observed with in vitro exposure of smooth muscle to FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales.
Resumo:
The viscoelasticity of mammalian lung is determined by the mechanical properties and structural regulation of the airway smooth muscle (ASM). The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde (FA) is an important indoor pollutant found among volatile organic compounds. This pollutant permeates through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure changing mechanical properties of ASM and inducing asthma symptoms, such as airway hyperresponsiveness, even at low concentrations. In the experimental scenario, the mechanical effect of FA is the stiffening of the tissue, but the mechanism behind this effect is not fully w1derstood. Thus, the aim of this study is to reproduce the mechanical behavior of the ASM, such as contraction and stretching, under FA action or not. For this, it was created a two-dimensional viscoelastic network model based on Voronoi tessellation solved using Runge-Kutta method of fourth order. The equilibrium configuration was reached when the forces in different parts of the network were equal. This model simulates the mechanical behavior of ASM through of a network of dashpots and springs. This dashpot-spring mechanical coupling mimics the composition of the actomyosin machinery of ASM through the contraction of springs to a minimum length. We hypothesized that formation of covalent bonds, due to the FA action, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholinc (MCh) reduce the equilibrium length of the spring. A sigmoid curve of tension as a function of MCh doses was obtained, showing increased tension when the muscle strip was exposed to FA. Our simulations suggest that FA, at a concentration of 0.1 ppm, can affect the elastic properties of the smooth muscle fibers by a factor of 120%. We also analyze the dynamic mechanical properties, observing the viscous and elastic behavior of the network. Finally, the proposed model, although simple, ir1corporates the phenomenology of both MCh and FA and reproduces experirnental results observed with ir1 vitro exposure of smooth muscle to .FA. Thus, this new mechanical approach incorporates several well know features of the contractile system of the cells ir1 a tissue level model. The model can also be used in different biological scales.