922 resultados para marker switch
Resumo:
Brain natriuretic peptide (BNP) is predominantly a cardiac ventricular hormone that promotes natriuresis and diuresis, inhibits the renin-anglotensin-aldosterone axis, and is a vasodilator. Plasma BNP levels are raised in essential hypertension, and more so in left ventricular (LV) hypertrophy and heart failure. Plasma BNP levels are also elevated in ischemic heart disease. Attempts have been made to use plasma BNP levels as a marker of LV dysfunction, but these have shown that plasma BNP levels are probably not sensitive enough to replace echocardiography in the diagnosis of LV dysfunction. Pericardial BNP or N-BNP may be more suitable markers of LV dysfunction. Plasma BNP levels are also elevated in right ventricular dysfunction, pregnancy-induced hypertension, aortic stenosis, age, subarachnoid hemorrhage, cardiac allograft rejection and cavopulmonary connection, and BNP may have an important pathophysiological role in some or all of these conditions. Clinical trials have demonstrated the natriuretic, diuretic and vasodilator effects, as well as inhibitory effects on renin and aldosterone of infused synthetic human BNP (nesiritide) in healthy humans. BNP infusion improves LV function in patients with congestive heart failure via a vasodilating and a prominent natriuretic effect. BNP infusion is useful for the treatment of decompensated congestive heart failure requiring hospitalization. The clinical potential of BNP is limited as it is a peptide and requires infusion. Drugs that modify the effects of BNP are furthering our understanding of the pathophysiological role and clinical potential of BNP. Increasing the effects of BNP may be a useful therapeutic approach in heart failure involving LV dysfunction. The levels of plasma BNP are increased by blockers, cardiac glycosides and vasopeptidase inhibitors, and this may contribute to the usefulness of these agents in heart failure. (C) 2001 Prous Science. All rights reserved.
Resumo:
We sequenced part of the mitochondrial 12S ribosomal RNA gene of 23 specimens of Sarcoptes scabiei from eight wombats, one dog and three humans. Twelve of the 326 nucleotide positions varied among these mites and there were nine haplotypes (sequences) that differed by 1-8 nucleotides. Phylogenetic analyses indicated that these mites were from two lineages: (1) mites from wombats from Victoria, Australia, and mites from the humans and dog from the Northern Territory, Australia (haplotypes 1-4, 9); and (2) mites from the humans and dog from the Northern Territory (haplotypes 5-8). Mites from the three different hosts (wombats, a dog and humans) had not diverged phylogenetically; rather, these mites had similar 12S sequences. Thus, we conclude that these mites from wombats, humans and a dog are closely related, and that they diverged from a common ancestor relatively recently. This conclusion is consistent with the argument that people and/or their dogs introduced to Australia the S. scabiei mites that infect wombats Australia. So, S. scabiei, which has been blamed for the extinction of populations of wombats in Australia, may be a parasitic mite that was introduced to Australia with people and/or their dogs. These data show that the mitochondrial 12S rRNA gene may be a suitable population marker of S. scabiei from wombats, dogs and humans in Australia.
Resumo:
The four-link chain of the motor unit represents the contemporary end-point of some two millennia of evolving knowledge in neuroscience. The paradigm shift in neuromuscular epistemology occurred in the mid-17th century. In 1666, the newly graduated Dutch doctor, Jan Swammerdam (1637-1680) published his former investigations of dissected nerve-muscle preparations. These experiments comprised the quantum leap from observation and speculation, to that of experimentation in the field of neuroanatomy and neurophysiology. In what he termed 'A Curious Experiment' he also described the phenomenon of intrinsic muscle excitability - I cannot observe that the muscle in the living animal ever absolutely ceases from all motion. Eighty years later (1752), von Haller demonstrated experimentally that irritability (contractility) was an intrinsic property of all muscular tissue; and distinguished between the sensibility of nerve impulses and the irritability of muscular contraction. This experimental progression from Swammerdam to von Haller culminated in 1850, when Claude Bernard's studies in experimental pharmacology confirmed that muscle was a functional unit, independent of any electrical innervation via its supplying nerve. This account comprises an audit of Swammerdam's work in the perspective of neuromuscular knowledge. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A rapid and reliable polymerase chain reaction (PCR)-based protocol was developed for detecting zygosity of the 1BL/1RS translocation in hexaploid wheat. The protocol involved a multiplex PCR with 2 pairs of oligonucleotide primers, rye-specific Ris-1 primers, and consensus 5S intergenic spacer (IGS) primers, and digestion of the PCR products with the restriction enzyme, MseI. A small piece of alkali-treated intact leaf tissue is used as a template for the PCR, thereby eliminating the necessity for DNA extraction. The test is simple, highly sensitive, and rapid compared with the other detection systems of 1BS1RS heterozygotes in hexaploid wheat. PCR results were confirmed with AFLP analyses. Diagnostic tests for 1BL/1RS translocation based on Sec-1-specific ELISA, screening for chromosome arm 1RS controlled rust resistance locus Yr9, and the PCR test differed in their ability to detect heterozygotes. The PCR test and rust test detected more heterozygotes than the ELISA test. The PCR test is being used to facilitate S1 family recurrent selection in the Germplasm Enhancement Program of the Australian Northern Wheat Improvement Program. A combination of the PCR zygosity test with other markers currently being implemented in the breeding program makes this test economical for 1BL/1RS characterisation of S1 families.
Resumo:
Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.
Resumo:
Recent population studies have demonstrated an association with the red-hair and fair-skin phenotype with variant alleles of the melanocortin-1 receptor (MC1R) which result in amino acid substitutions within the coding region leading to an altered receptor activity. In particular, Arg151Cys, Arg160Trp and Asp294His were the most commonly associated variants seen in the south-east Queensland population with at least one of these alleles found in 93% of those with red hair. In order to study the individual effects of these variants on melanocyte biology and melanocytic pigmentation, we established a series of human melanocyte strains genotyped for the MC1R receptor which included wild-type consensus, variant heterozygotes, compound heterozygotes and homozygotes for Arg151Cys, Arg160Trp, Val60Leu and Val92Met alleles. These strains ranged from darkly pigmented to amelanotic, with all strains of consensus sequence having dark pigmentation. UV sensitivity was found not to be associated with either MC1R genotype or the level of pigmentation with a range of sensitivities seen across all genotypes. Ultrastructural analysis demonstrated that while consensus strains contained stage IV melanosomes in their terminal dendrites, Arg151Cys and Arg160Trp homozygote strains contained only stage II melanosomes. This was despite being able to show expression of tyrosinase and tyrosinase-related protein-1 markers, although at reduced levels and an ability to convert exogenous 3,4-dihydroxyphenyl-alanine (DOPA) to melanin in these strains.
Resumo:
A switch-mode assisted linear amplifier (SMALA) combining a linear (Class B) and a switch-mode (Class D) amplifier is presented. The usual single hysteretic controlled half-bridge current dumping stage is replaced by two parallel buck converter stages, in a parallel voltage controlled topology. These operate independently: one buck converter sources current to assist the upper Class B output device, and a complementary converter sinks current to assist the lower device. This topology lends itself to a novel control approach of a dead-band at low power levels where neither class D amplifier assists, allowing the class B amplifier to supply the load without interference, ensuring high fidelity. A 20 W implementation demonstrates 85% efficiency, with distortion below 0.08% measured across the full audio bandwidth at 15 W. The class D amplifier begins assisting at 2 W, and below this value, the distortion was below 0.03%. Complete circuitry is given, showing the simplicity of the additional class D amplifier and its corresponding control circuitry.
Resumo:
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.
Resumo:
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies ( MUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, MUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on MUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.
Resumo:
This paper describes a modular solid-state switching cell derived from the Marx generator concept to be used in topologies for generating multilevel unipolar and bipolar high-voltage (HV) pulses into resistive loads. The switching modular cell comprises two ON/OFF semiconductors, a diode, and a capacitor. This cell can be stacked, being the capacitors charged in series and their voltages balanced in parallel. To balance each capacitor voltage without needing any parameter measurement, a vector decision diode algorithm is used in each cell to drive the two switches. Simulation and experimental results, for generating multilevel unipolar and bipolar HV pulses into resistive loads are presented.
Resumo:
The aim of the present study was to investigate variations in oxidized LDL (oxLDL) at the onset of acute myocardial infarction (AMI) and over the recovery period, exploring their relationship with coronary disease severity. A follow-up of 50 AMI patients was evaluated against 25 healthy volunteers (reference group). The AMI patients were evaluated at three time points: at admission before the administration of IIb/IIIa inhibitors and angioplasty, and two and 40 days after intervention. Plasma oxLDL concentrations were measured by ELISA. oxLDL was found to be significantly higher in AMI patients in the acute phase relative to reference levels, decreasing progressively over the recovery period. The results also demonstrated that oxLDL levels were decreased in patients with the left circumflex artery (LCX) as culprit vessel compared to the left anterior descending coronary (LAD) or right coronary artery (RCA). The results highlight a significant increase in oxLDL concentration related to coronary artery disease severity, as conditions such as LCX lesions are usually associated with a favorable prognosis, contrasting with LAD-associated conditions that can compromise large areas of myocardium. The results thus suggest that oxLDL may constitute a promising marker in assessment of AMI evolution.
Resumo:
OBJECTIVES: This study analyzes the results of the arterial switch operation for transposition of the great arteries in member institutions of the European Congenital Heart Surgeons Association. METHODS: The records of 613 patients who underwent primary arterial switch operations in each of 19 participating institutions in the period from January 1998 through December 2000 were reviewed retrospectively. RESULTS: A ventricular septal defect was present in 186 (30%) patients. Coronary anatomy was type A in 69% of the patients, and aortic arch pathology was present in 20% of patients with ventricular septal defect. Rashkind septostomy was performed in 75% of the patients, and 69% received prostaglandin. There were 37 hospital deaths (operative mortality, 6%), 13 (3%) for patients with an intact ventricular septum and 24 (13%) for those with a ventricular septal defect (P < .001). In 36% delayed sternal closure was performed, 8% required peritoneal dialysis, and 2% required mechanical circulatory support. Median ventilation time was 58 hours, and intensive care and hospital stay were 6 and 14 days, respectively. Although of various preoperative risk factors the presence of a ventricular septal defect, arch pathology, and coronary anomalies were univariate predictors of operative mortality, only the presence of a ventricular septal defect approached statistical significance (P = .06) on multivariable analysis. Of various operative parameters, aortic crossclamp time and delayed sternal closure were also univariate predictors; however, only the latter was an independent statistically significant predictor of death. CONCLUSIONS: Results of the procedure in European centers are compatible with those in the literature. The presence of a ventricular septal defect is the clinically most important preoperative risk factor for operative death, approaching statistical significance on multivariable analysis.
Resumo:
Allied to an epidemiological study of population of the Senology Unit of Braga’s Hospital that have been diagnosed with malignant breast cancer, we describe the progression in time of repeated measurements of tumor marker Carcinoembryonic antigen (CEA). Our main purpose is to describe the progression of this tumor marker as a function of possible risk factors and, hence, to understand how these risk factors influences that progression. The response variable, values of CEA, was analyzed making use of longitudinal models, testing for different correlation structures. The same covariates used in a previous survival analysis were considered in the longitudinal model. The reference time used was time from diagnose until death from breast cancer. For diagnostic of the models fitted we have used empirical and theoretical variograms. To evaluate the fixed term of the longitudinal model we have tested for a changing point on the effect of time on the tumor marker progression. A longitudinal model was also fitted only to the subset of patients that died from breast cancer, using the reference time as time from date of death until blood test.