989 resultados para marine ecology
Resumo:
Gusmão et al. (2013; Mar Ecol Prog Ser 482:279-298) review causes of sex ratio skew in pelagic copepods and in doing so repeatedly dispute the paper of Hirst et al. (2010) ‘Does predation control adult sex ratios and longevities in marine pelagic copepods?’ Here we respond to some important errors in their citation of our paper and briefly highlight where future work is needed in order to attribute the causes of strong sex ratio skew seen in some copepod families.
Resumo:
Ecosystem services assessments are increasingly being used to inform marine policy and planning. These assessments involve significant time, effort, and expertise. It is important at the outset to determine which of many ecosystem services should be quantified and which measures of ecological output, economic impact, or value should be assessed. Furthermore, the literature shows that in practice such assessments are unevenly applied and rarely used effectively in decision-making processes. We develop a structured decision-making approach, called a triage, to assess what types of ecosystem services should be assessed to improve the uptake and usefulness of such information in marine planning. Two case studies, in France and the United Kingdom, provide examples of the application of the triage approach.
Resumo:
Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.
Resumo:
A dynamic food-web model of more than 1000 species was used to quantify the recovery trajectory of marine community size-structure under different hypothetical fishing regimes, using the Northeast Atlantic as an example. Size-structure was summarised by four indicators: the Large Fish Indicator (LFI), the Large Species Indicator (LSI), the biomass-weighted mean maximum length of fish species (EMBED Equation.3) and the biomass-weighted mean maturation length of fish species (EMBED Equation.3). Time-series of these indicators recorded recovery following release from fishing with various size-selectivities, intensities and durations. In model simulations, fishing-induced trophic cascades were observed to distort fish community size-structure, but these did not have a large influence on recovery level or duration as measured by the four indicators. However, simulations showed that local extinctions of large fish species increased in number with both fishing intensity and duration, and could strongly limit the recovery level. Recovery of fish community size-structure to near equilibrium frequently took multiple decades in simulations; these long transient periods suggest that management interventions for size-structure recovery may require much longer than previously thought. Our results demonstrate the need for community-level modelling to set realistic targets for management of community size-structure.
Resumo:
Tese de Doutoramento em Ciências do Mar, especialidade em Ecologia Marinha.
Resumo:
To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.
Resumo:
Although sex ratios close to unity are expected in dioecious species, biased sex ratios are common in nature. It is essential to understand causes of skewed sex ratios in situ, as they can lead to mate limitation and have implications for the success of natural populations. Female-skewed sex ratios are commonly observed in copepods in situ. Here we discuss the challenges of copepod sex ratio research and provide a critical review of factors determining copepod sex ratios, focusing on 2 main objectives. The first is a critique of the male predation theory, which is currently the main process thought to be responsible for female-skewed sex ratios. It assumes that males have higher mortality because of increased vulnerability to predation during their search for mates. We show that there is little support for the male predation theory, that sex ratios skewed toward females occur in the absence of predation, that sex ratios are not related to predation pressure, and that where sex-skewed predation does occur, it is biased toward females. Our second objective is to suggest alternative hypotheses regarding the determination of sex ratios. We demonstrate that environmental factors, environmental sex determination and sex change have strong effects on copepod sex ratios, and suggest that differential physiological longevity of males and females may be more important in determining sex ratios than previously thought. We suggest that copepod sex ratios are the result of a mixture of factors.
Resumo:
Hirst et al. (2013; Mar Ecol Prog Ser 489:297-298) suggest that Gusmão et al. (2013; Mar Ecol Prog Ser 482:279-298) misinterpreted the findings of Hirst et al. (2010; Limnol Oceanogr 55:2193-2206). They restate that the major factors determining sex ratio in pelagic copepods act upon the adult stage, but they place less emphasis on the idea that predation on male copepods is a likely determinant, and highlight the role of physiological longevity. Here we reconsider the data and confirm our position that at present there is limited evidence to support the theory of male-skewed predation. However, we agree that sex determination is governed by a combination of factors, with the relative emphasis being the main point of contention between the 2 parties.
Resumo:
Meiofauna, and especially marine nematodes are common in sediments around the world. Despite very wide ranging distributions in many nematode species, little is presently known about their dispersal mechanisms shaping these patterns. Rafting, and perhaps ballast water transport has been suggested as viable means for nematode long-range transport. On a much smaller scale other processes have been suggested for their dispersal. They generally include some form of passive suspension into the water column and later on a passive, haphazard settling back towards the bottom. Small-scale phenomena in nematode dispersal were studied by conducting a series of studies at Askö field station, Trosa Archipelago, Baltic proper. Studied aspects were one case of macrofaunal influence on nematode dispersal rate, using an amphipod, Monoporeia affinis as disturbing agent, and three different studies on mechanisms related to settling. The experiments were conducted both in laboratory and field settings. The amphipod Monoporeia affinis did not exert any influence on the dispersal rate in the nematodes. The nematode dispersal was only an effect of time, in the aspect that the more time that past, the more nematodes dispersed from their place of origin. The settling experiments revealed that nematodes do have an active component in their settling behaviour, as they were able to exert influence on the spot where they were to settle. They were able to choose settling spot in response to the food quality of the sediment. It also became evident that contrary to common belief, nematodes are able to extend their presence in the water column far beyond the times that would be predicted considering settling velocities and hydrodynamic conditions alone.
Resumo:
Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.
Resumo:
Since pre-industrial times, uptake of anthropogenic CO2 by surface ocean waters has caused a documented change of 0.1 pH units. Calcifying organisms are sensitive to elevated CO2 concentrations due to their calcium carbonate skeletons. In temperate rocky intertidal environments, calcifying and noncalcifying macroalgae make up diverse benthic photoautotrophic communities. These communities may change as calcifiers and noncalcifiers respond differently to rising CO2 concentrations. In order to test this hypothesis, we conducted an 86?d mesocosm experiment to investigate the physiological and competitive responses of calcifying and noncalcifying temperate marine macroalgae to 385, 665, and 1486 µatm CO2. We focused on comparing 2 abundant red algae in the Northeast Atlantic: Corallina officinalis (calcifying) and Chondrus crispus (noncalcifying). We found an interactive effect of CO2 concentration and exposure time on growth rates of C. officinalis, and total protein and carbohydrate concentrations in both species. Photosynthetic rates did not show a strong response. Calcification in C. officinalis showed a parabolic response, while skeletal inorganic carbon decreased with increasing CO2. Community structure changed, as Chondrus crispus cover increased in all treatments, while C. officinalis cover decreased in both elevated-CO2 treatments. Photochemical parameters of other species are also presented. Our results suggest that CO2 will alter the competitive strengths of calcifying and noncalcifying temperate benthic macroalgae, resulting in different community structures, unless these species are able to adapt at a rate similar to or faster than the current rate of increasing sea-surface CO2 concentrations.
Resumo:
Experimental assessments of species vulnerabilities to ocean acidification are rapidly increasing in number, yet the potential for short- and long-term adaptation to high CO2 by contemporary marine organisms remains poorly understood. We used a novel experimental approach that combined bi-weekly sampling of a wild, spawning fish population (Atlantic silverside Menidia menidia) with standardized offspring CO2 exposure experiments and parallel pH monitoring of a coastal ecosystem. We assessed whether offspring produced at different times of the spawning season (April to July) would be similarly susceptible to elevated (1100 µatm, pHNIST = 7.77) and high CO2 levels (2300 µatm, pHNIST = 7.47). Early in the season (April), high CO2 levels significantly (p < 0.05) reduced fish survival by 54% (2012) and 33% (2013) and reduced 1 to 10 d post-hatch growth by 17% relative to ambient conditions. However, offspring from parents collected later in the season became increasingly CO2-tolerant until, by mid-May, offspring survival was equally high at all CO2 levels. This interannually consistent plasticity coincided with the rapid annual pH decline in the species' spawning habitat (mean pH: 1 April/31 May = 8.05/7.67). It suggests that parents can condition their offspring to seasonally acidifying environments, either via changes in maternal provisioning and/or epigenetic transgenerational plasticity (TGP). TGP to increasing CO2 has been shown in the laboratory but never before in a wild population. Our novel findings of direct CO2-related survival reductions in wild fish offspring and seasonally plastic responses imply that realistic assessments of species CO2-sensitivities must control for parental environments that are seasonally variable in coastal habitats.