958 resultados para manned and unmanned aircraft
Resumo:
This thesis describes the investigation of an Aircraft Dynamic Navigation (ADN) approach, which incorporates an Aircraft Dynamic Model (ADM) directly into the navigation filter of a fixed-wing aircraft or UAV. The result is a novel approach that offers both performance improvements and increased reliability during short-term GPS outages. This is important in allowing future UAVs to achieve routine, unconstrained, and safe operations in commercial environments. The primary contribution of this research is the formulation Unscented Kalman Filter (UKF) which incorporates a complex, non-linear, laterally and longitudinally coupled, ADM, and sensor suite consisting of a Global Positioning System (GPS) receiver, Inertial Measurement Unit (IMU), Electronic Compass (EC), and Air Data (AD) Pitot Static System.
Resumo:
В статье представлено развитие принципа построения автоматической пилотажно-навигационной системы (АПНС) для беспилотного летательного аппарата (БЛА). Принцип заключается в синтезе комплексных систем управления БПЛА не только на основе использования алгоритмов БИНС, но и алгоритмов, объединяющих в себе решение задач формирования и отработки сформированной траектории резервированной системой управления и навигации. Приведены результаты аналитического исследования и данные летных экспериментов разработанных алгоритмов АПНС БЛА, обеспечивающих дополнительное резервирование алгоритмов навигации и наделяющих БЛА новым функциональной способностью по выходу в заданную точку пространства с заданной скоростью в заданный момент времени с учетом атмосферных ветровых возмущений. Предложена и испытана методика идентификации параметров воздушной атмосферы: направления и скорости W ветра. Данные летных испытаний полученного решения задачи терминальной навигации демонстрируют устойчивую работу синтезированных алгоритмов управления в различных метеоусловиях. The article presents a progress in principle of development of automatic navigation management system (ANMS) for small unmanned aerial vehicle (UAV). The principle defines a development of integrated control systems for UAV based on tight coupling of strap down inertial navigation system algorithms and algorithms of redundant flight management system to form and control flight trajectory. The results of the research and flight testing of the developed ANMS UAV algorithms are presented. The system demonstrates advanced functional redundancy of UAV guidance. The system enables new UAV capability to perform autonomous multidimensional navigation along waypoints with controlled speed and time of arrival taking into account wind. The paper describes the technique for real-time identification of atmosphere parameters such as wind direction and wind speed. The flight test results demonstrate robustness of the algorithms in diverse meteorological conditions.
Resumo:
The growing number of potential applications of Unmanned Aircraft Systems (UAS) in civilian operations and national security is putting pressure of National Airworthiness Authorities to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends not only on developments in improved UAS reliability and safety, but also on regulations for certification, and methodologies for operational performance and safety assessment. This paper focuses on the latter and describes progress in relation to a previously proposed framework for evaluating robust autonomy of UAS. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It discusses how the data from the proposed evaluation can be used as an aid for decision making in certification and UAS designs. Finally, it discusses challenges associated with the evaluation.
Resumo:
Unmanned aircraft, or drones, are a rapidly emerging sector of the aviation industry. There has been limited substantive research, however, into the public perception and acceptance of drones. This paper presents the results from two surveys of the Australian public designed to investigate (a) whether the public perceive drones to be riskier than existing manned aviation, (b) whether the terminology used to describe the technology influences public perception, and (c) what the broader concerns are that may influence public acceptance of the technology. We find that the Australian public currently hold a relatively neutral attitude towards drones. Respondents did not consider the technology to be overly unsafe, risky, beneficial, or threatening. Drones are largely viewed as being of comparable risk to that of existing manned aviation. Further, terminology had a minimal effect on the perception of the risks or acceptability of the technology. The neutral response is likely due to a lack of knowledge about the technology, which was also identified as the most prevalent public concern as opposed to the risks associated with its use. Privacy, military use and misuse (e.g., terrorism) were also significant public concerns. The results suggest that society is yet to form an opinion of drones. As public knowledge increases, the current position is likely to change. Industry communication and media coverage will likely influence the ultimate position adopted by the public, which can be difficult to change once established.
Resumo:
A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.
Resumo:
This paper presents a statistical aircraft trajectory clustering approach aimed at discriminating between typical manned and expected unmanned traffic patterns. First, a resampled version of each trajectory is modelled using a mixture of Von Mises distributions (circular statistics). Second, the remodelled trajectories are globally aligned using tools from bioinformatics. Third, the alignment scores are used to cluster the trajectories using an iterative k-medoids approach and an appropriate distance function. The approach is then evaluated using synthetically generated unmanned aircraft flights combined with real air traffic position reports taken over a sector of Northern Queensland, Australia. Results suggest that the technique is useful in distinguishing between expected unmanned and manned aircraft traffic behaviour, as well as identifying some common conventional air traffic patterns.
Resumo:
This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is then combined with a nonlinear guidance and control logic, and simulated test results demonstrate the robustness of this approach to strong winds during a glided descent. The average path deviation errors incurred are comparable to or even better than that of manned, powered aircraft. Secondly, a study into suitable multi-criteria decision making approaches and the problems that confront the decision-maker is presented. From this study, it is believed that decision processes that utilize human expert knowledge and fuzzy logic reasoning are most suited to the problem at hand, and further investigations will be conducted to identify the particular technique/s to be implemented in simulations and field tests. The automated UAV forced landing approach presented in this paper is promising, and will allow the progression of this technology from the development and simulation stages through to a prototype system
Resumo:
This presentation discusses some of the general issues relating to the classification of UAS for the purposes of defining and promulgating safety regulations. One possible approach for the definition of a classification scheme for UAS Type Certification Categories reviewed.
Resumo:
A history and introduction to civil unmanned aircraft systems in Australia. Discussion is provided on some of the current challenges facing the civil UAS sector and the research being undertaken to address these challenges.
Resumo:
This presentation explores the requirements and capabilities of Unmanned Aircraft Systems (UAS) for applications in Law Enforcement and Search and Rescue.
Resumo:
This presentation provides a review of current civil unmanned aircraft system operations and applications, the operational environment and aviation safety regulations in Australia. A summary of current regulatory reform efforts is also provided. The presentation includes new and existing research programs established to address the technical and social issues facing the unmanned aircraft systems industry and aid the regulatory reform process.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
This work presents two UAS See and Avoid approaches using Fuzzy Control. We compare the performance of each controller when a Cross-Entropy method is applied to optimase the parameters for one of the controllers. Each controller receive information from an image processing front-end that detect and track targets in the environment. Visual information is then used under a visual servoing approach to perform autonomous avoidance. Experimental flight trials using a small quadrotor were performed to validate and compare the behaviour of both controllers
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.