970 resultados para malliavin calculus
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação
Resumo:
This paper tries to remove what seems to be the remaining stumbling blocks in the way to a full understanding of the Curry-Howard isomorphism for sequent calculus, namely the questions: What do variables in proof terms stand for? What is co-control and a co-continuation? How to define the dual of Parigot's mu-operator so that it is a co-control operator? Answering these questions leads to the interpretation that sequent calculus is a formal vector notation with first-class co-control. But this is just the "internal" interpretation, which has to be developed simultaneously with, and is justified by, an "external" one, offered by natural deduction: the sequent calculus corresponds to a bi-directional, agnostic (w.r.t. the call strategy), computational lambda-calculus. Next, the duality between control and co-control is studied and proved in the context of classical logic, where one discovers that the classical sequent calculus has a distortion towards control, and that sequent calculus is the de Morgan dual of natural deduction.
Resumo:
Résumé Le μ-calcul est une extension de la logique modale par des opérateurs de point fixe. Dans ce travail nous étudions la complexité de certains fragments de cette logique selon deux points de vue, différents mais étroitement liés: l'un syntaxique (ou combinatoire) et l'autre topologique. Du point de vue syn¬taxique, les propriétés définissables dans ce formalisme sont classifiées selon la complexité combinatoire des formules de cette logique, c'est-à-dire selon le nombre d'alternances des opérateurs de point fixe. Comparer deux ensembles de modèles revient ainsi à comparer la complexité syntaxique des formules as¬sociées. Du point de vue topologique, les propriétés définissables dans cette logique sont comparées à l'aide de réductions continues ou selon leurs positions dans la hiérarchie de Borel ou dans celle projective. Dans la première partie de ce travail nous adoptons le point de vue syntax¬ique afin d'étudier le comportement du μ-calcul sur des classes restreintes de modèles. En particulier nous montrons que: (1) sur la classe des modèles symétriques et transitifs le μ-calcul est aussi expressif que la logique modale; (2) sur la classe des modèles transitifs, toute propriété définissable par une formule du μ-calcul est définissable par une formule sans alternance de points fixes, (3) sur la classe des modèles réflexifs, il y a pour tout η une propriété qui ne peut être définie que par une formule du μ-calcul ayant au moins η alternances de points fixes, (4) sur la classe des modèles bien fondés et transitifs le μ-calcul est aussi expressif que la logique modale. Le fait que le μ-calcul soit aussi expressif que la logique modale sur la classe des modèles bien fondés et transitifs est bien connu. Ce résultat est en ef¬fet la conséquence d'un théorème de point fixe prouvé indépendamment par De Jongh et Sambin au milieu des années 70. La preuve que nous donnons de l'effondrement de l'expressivité du μ-calcul sur cette classe de modèles est néanmoins indépendante de ce résultat. Par la suite, nous étendons le langage du μ-calcul en permettant aux opérateurs de point fixe de lier des occurrences négatives de variables libres. En montrant alors que ce formalisme est aussi ex¬pressif que le fragment modal, nous sommes en mesure de fournir une nouvelle preuve du théorème d'unicité des point fixes de Bernardi, De Jongh et Sambin et une preuve constructive du théorème d'existence de De Jongh et Sambin. RÉSUMÉ Pour ce qui concerne les modèles transitifs, du point de vue topologique cette fois, nous prouvons que la logique modale correspond au fragment borélien du μ-calcul sur cette classe des systèmes de transition. Autrement dit, nous vérifions que toute propriété définissable des modèles transitifs qui, du point de vue topologique, est une propriété borélienne, est nécessairement une propriété modale, et inversement. Cette caractérisation du fragment modal découle du fait que nous sommes en mesure de montrer que, modulo EF-bisimulation, un ensemble d'arbres est définissable dans la logique temporelle Ε F si et seulement il est borélien. Puisqu'il est possible de montrer que ces deux propriétés coïncident avec une caractérisation effective de la définissabilité dans la logique Ε F dans le cas des arbres à branchement fini donnée par Bojanczyk et Idziaszek [24], nous obtenons comme corollaire leur décidabilité. Dans une deuxième partie, nous étudions la complexité topologique d'un sous-fragment du fragment sans alternance de points fixes du μ-calcul. Nous montrons qu'un ensemble d'arbres est définissable par une formule de ce frag¬ment ayant au moins η alternances si et seulement si cette propriété se trouve au moins au n-ième niveau de la hiérarchie de Borel. Autrement dit, nous vérifions que pour ce fragment du μ-calcul, les points de vue topologique et combina- toire coïncident. De plus, nous décrivons une procédure effective capable de calculer pour toute propriété définissable dans ce langage sa position dans la hiérarchie de Borel, et donc le nombre d'alternances de points fixes nécessaires à la définir. Nous nous intéressons ensuite à la classification des ensembles d'arbres par réduction continue, et donnons une description effective de l'ordre de Wadge de la classe des ensembles d'arbres définissables dans le formalisme considéré. En particulier, la hiérarchie que nous obtenons a une hauteur (ωω)ω. Nous complétons ces résultats en décrivant un algorithme permettant de calculer la position dans cette hiérarchie de toute propriété définissable.
Resumo:
In this paper we consider an insider with privileged information thatis affected by an independent noise vanishing as the revelation timeapproaches. At this time, information is available to every trader. Ourfinancial markets are based on Wiener space. In probabilistic terms weobtain an infinite dimensional extension of Jacod s theorem to covercases of progressive enlargement of filtrations. The application ofthis result gives the semimartingale decomposition of the originalWiener process under the progressively enlarged filtration. As anapplication we prove that if the rate at which the additional noise inthe insider s information vanishes is slow enough then there is noarbitrage and the additional utility of the insider is finite.
Resumo:
Evidences collected from smartphones users show a growing desire of personalization offered by services for mobile devices. However, the need to accurately identify users' contexts has important implications for user's privacy and it increases the amount of trust, which users are requested to have in the service providers. In this paper, we introduce a model that describes the role of personalization and control in users' assessment of cost and benefits associated to the disclosure of private information. We present an instantiation of such model, a context-aware application for smartphones based on the Android operating system, in which users' private information are protected. Focus group interviews were conducted to examine users' privacy concerns before and after having used our application. Obtained results confirm the utility of our artifact and provide support to our theoretical model, which extends previous literature on privacy calculus and user's acceptance of context-aware technology.
Resumo:
The teaching of higher level mathematics for technical students in a virtual learningenvironment poses some difficulties, but also opportunities, now specific to that virtuality.On the other hand, resources and ways to do now manly available in VLEs might soon extend to all kinds of environments.In this short presentation we will discuss anexperience carried at Universitat Oberta deCatalunya (UOC) involving (an on line university), first, the translation of LaTeX written existent materials to a web based format(specifically, a combination of XHTML andMathML), and then the integration of a symbolic calculator software (WIRIS) running as a Java applet embedded in the materials, intending to achieve an evolution from memorising concepts and repetitive algorithms to understanding and experiment concepts and the use of those algorithms.
Resumo:
Traduction de Wylie, rédigée par Li Shan lan ; préfaces Chinoises des deux traducteurs (1859) ; préface anglaise, écrite à Shang hai par A. Wylie (juillet 1859). Liste de termes techniques en anglais et en Chinois. Gravé à la maison Mo hai (1859).18 livres.
Resumo:
Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.
Resumo:
Rapport de recherche
Resumo:
Exam questions and solutions on a variety of calculus topics.
Resumo:
Notes, exercises, exam questions and solutions for a second year analysis course.
Resumo:
Word notes for a first year university calculus course