999 resultados para magnetic cluster


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results are presented of a combined periodic and cluster model approach to the electronic structure and magnetic interactions in the spin-chain compounds Ca2CuO3 and Sr2CuO3. An extended t-J model is presented that includes in-chain and interchain hopping and magnetic interaction processes with parameters extracted from ab initio calculations. For both compounds, the in-chain magnetic interaction is found to be around -240 meV, larger than in any of the other cuprates reported in the literature. The interchain magnetic coupling is found to be weakly antiferromagnetic, -1 meV. The effective in-chain hopping parameters are estimated to be ~650 meV for both compounds, whereas the value of the interchain hopping parameter is 30 meV for Sr2CuO3 and 40 meV for Ca2CuO3, in line with the larger interchain distance in the former compound. These effective parameters are shown to be consistent with expressions recently suggested for the Néel temperature and the magnetic moments, and with relations that emerge from the t-J model Hamiltonian. Next, we investigate the physical nature of the band gap. Periodic calculations indicate that an interpretation in terms of a charge-transfer insulator is the most appropriate one, in contrast to the suggestion of a covalent correlated insulator recently reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calculations are reported of the magnetic anisotropy energy of two-dimensional (2D) Co nanostructures on a Pt(111) substrate. The perpendicular magnetic anisotropy (PMA) of the 2D Co clusters strongly depends on their size and shape, and rapidly decreases with increasing cluster size. The PMA calculated is in reasonable agreement with experimental results. The sensitivity of the results to the Co-Pt spacing at the interface is also investigated and, in particular, for a complete Co monolayer we note that the value of the spacing at the interface determines whether PMA or in-plane anisotropy occurs. We find that the PMA can be greatly enhanced by the addition of Pt adatoms to the top surface of the 2D Co clusters. A single Pt atom can induce in excess of 5 meV to the anisotropy energy of a cluster. In the absence of the Pt adatoms the PMA of the Co clusters falls below 1 meV/Co atom for clusters of about 10 atoms whereas, with Pt atoms added to the surface of the clusters, a PMA of 1 meV/Co atom can be maintained for clusters as large as about 40 atoms. The effect of placing Os atoms on the top of the Co clusters is also considered. The addition of 5d atoms and clusters on the top of ferromagnetic nanoparticles may provide an approach to tune the magnetic anisotropy and moment separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the Cluster spacecraft were located near the high-latitude magnetopause, between 10:10 and 10:40 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all-sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7nm that show poleward-moving auroral forms (PMAFs), consistent with magnetic reconnection at dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all-sky images. Between the PMAFs meridional keograms, extracted from the all-sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open-closed boundary (OCB) associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs we infer that the evolution time of FTEs is 5-11 minutes from its origin on magnetopause to its addition to the polar cap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rare mu(6)-oxo-centered Mn-6 mixed-valent cluster (1) is prepared and used as a secondary building unit for the self-assembly of its azido-bridged polymeric analogue (2) in a systematic way with the retention of the Mn-6 core of (1). Both complexes are characterized by X-ray single-crystal structure determination. The complex 1 was crystallized in a monoclinic system, space group P2(1), a = 11.252(5) A, b = 20.893(9) A, c = 12.301(6) A, and beta = 115.853(7)degrees, whereas the polymeric analogue was crystallized in an orthorhombic system, space group P2(1)2(1)2(1), a = 13.1941(8) A, b = 14.9897(9) A, and c = 27.8746(14) A. Variable-temperature magnetic behavior showed the presence of strong antiferromagnetic interaction in both cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the Cluster spacecraft were located near the high-latitude magnetopause, between 1010 and 1040 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all‐sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7 nm that show poleward‐moving auroral forms (PMAFs), consistent with magnetic reconnection at the dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all‐sky images. Between the PMAFs meridional keograms, extracted from the all‐sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open‐closed boundary associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs, we infer that the evolution time of FTEs is 5–11 minutes from its origin on the magnetopause to its addition to the polar cap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extending previous studies, a full-circle investigation of the ring current has been made using Cluster 4-spacecraft observations near perigee, at times when the Cluster array had relatively small separations and nearly regular tetrahedral configurations, and when the Dst index was greater than −30 nT (non-storm conditions). These observations result in direct estimations of the near equatorial current density at all magnetic local times (MLT) for the first time and with sufficient accuracy, for the following observations. The results confirm that the ring current flows westward and show that the in situ average measured current density (sampled in the radial range accessed by Cluster 4–4.5RE) is asymmetric in MLT, ranging from 9 to 27 nAm−2. The direction of current is shown to be very well ordered for the whole range of MLT. Both of these results are in line with previous studies on partial ring extent. The magnitude of the current density, however, reveals a distinct asymmetry: growing from 10 to 27 nAm−2 as azimuth reduces from about 12:00MLT to 03:00 and falling from 20 to 10 nAm−2 less steadily as azimuth reduces from 24:00 to 12:00MLT. This result has not been reported before and we suggest it could reflect a number of effects. Firstly, we argue it is consistent with the operation of region-2 field aligned-currents (FACs), which are expected to flow upward into the ring current around 09:00MLT and downward out of the ring current around 14:00MLT. Secondly, we note that it is also consistent with a possible asymmetry in the radial distribution profile of current density (resulting in higher peak at 4– 4.5RE). We note that part of the enhanced current could reflect an increase in the mean AE activity (during the periods in which Cluster samples those MLT).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study by Langevin molecular dynamics simulations systematically the influence of polydispersity in the particle size, and subsequently in the dipole moment, on the physical properties of ferrofluids. The polydispersity is in a first approximation modeled by a bidisperse system that consists of small and large particles at different ratios of their volume fractions. In the first part of our investigations the total volume fraction of the system is fixed, and the volume fraction phi(L) of the large particles is varied. The initial susceptibility chi and magnetization curve of the systems show a strong dependence on the value of phi(L). With the increase of phi(L), the magnetization M of the system has a much faster increment at weak fields, and thus leads to a larger chi. We performed a cluster analysis that indicates that this is due to the aggregation of the large particles in the systems. The average size of these clusters increases with increasing phi(L). In the second part of our investigations, we fixed the volume fraction of the large particles, and increased the volume fraction phi(S) of the small particles in order to study their influence on the chain formation of the large ones. We found that the average aggregate size formed by large particles decreases when phi(S) is increased, demonstrating a significant effect of the small particles on the structural properties of the system. A topological analysis of the structure reveals that the majority of the small particles remain nonaggregated. Only a small number of them are attracted to the ends of the chains formed by large particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The launch of the Double Star mission has provided the opportunity to monitor events at distinct locations on the dayside magnetopause, in coordination with the quartet of Cluster spacecraft. We present results of two such coordinated studies. In the first, 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawn-side magnetosphere. Cluster observed northward moving FTEs with +/- polarity, whereas TC-1 saw -/+ polarity FTEs. The strength, motion and occurrence of the FTE signatures changes somewhat according to changes in IMF clock angle. These observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1. The observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, lying north and south of the reconnection line, respectively. This scenario is supported by the application of a model, designed to track flux tube motion, to conditions appropriate for the prevailing interplanetary conditions. The results from the model confirm the observational evidence that the low-latitude FTE dynamics is sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model predicts that TC-1 should miss the resulting FTEs more often than Cluster, as is observed. For the second conjunction, on the 4 Jan 2005, the Cluster and TC-1 spacecraft all exited the dusk-side magnetosphere almost simultaneously, with TC-1 lying almost equatorial and Cluster at northern latitudes at about 4 RE from TC-1. The spacecraft traverse the magnetopause during a strong reversal in the IMF from northward to southward and a number of magnetosheath FTE signatures are subsequently observed. One coordinated FTE, studied in detail by Pu et al, [this issue], carries and inflowing energetic electron population and shows a motion and orientation which is similar at all spacecraft and consistent with the predictions of the model for the flux tube dynamics, given a near sub-solar reconnection line. This event can be interpreted either as the passage of two parallel flux tubes arising from adjacent x-line positions, or as a crossing of a single flux tube at different positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.