895 resultados para machine shop
Resumo:
Title Varies: V.1, Home Study; V.2-3, Home Study Magazine; V.4,No.10-V.8,No.4, Science and Industry
Resumo:
Mode of access: Internet.
Resumo:
This thesis deals with the problems associated with the planning and control of production, with particular reference to a small aluminium die casting company. The main problem areas were identified as: (a) A need to be able to forecast the customers demands upon the company's facilities. (b) A need to produce a manufacturing programme in which the output of the foundry (or die casting section) was balanced with the available capacity in the machine shop. (c) The need to ensure that the resultant system enabled the company's operating budget to have a reasonable chance of being achieved. At the commencement of the research work the major customers were members of the automobile industry and had their own system of forecasting, from which they issued manufacturing schedules to their component suppliers, The errors in the forecast were analysed and the distributions noted. Using these distributions the customer's forecast was capable of being modified to enable his final demand to be met with a known degree of confidence. Before a manufacturing programme could be developed the actual manufacturing system had to be reviewed and it was found that as with many small companies there was a remarkable lack of formal control and written data. Relevant data with regards to the component and the manufacturing process had therefore to be collected and analysed. The foundry process was fixed but the secondary machining operations were analysed by a technique similar to Component Flow Analysis and as a result the machines were arranged in a series of flow lines. A system of manual production control was proposed and for comparison, a local computer bureau was approached and a system proposed incorporating the production of additional management information. These systems are compared and the relative merits discussed and a proposal made for implementation.
Resumo:
Non-preemptive two-machine flow-shop scheduling problem with uncertain processing times of n jobs is studied. In an uncertain version of a scheduling problem, there may not exist a unique schedule that remains optimal for all possible realizations of the job processing times. We find necessary and sufficient conditions (Theorem 1) when there exists a dominant permutation that is optimal for all possible realizations of the job processing times. Our computational studies show the percentage of the problems solvable under these conditions for the cases of randomly generated instances with n ≤ 100 . We also show how to use additional information about the processing times of the completed jobs during optimal realization of a schedule (Theorems 2 – 4). Computational studies for randomly generated instances with n ≤ 50 show the percentage of the two- machine flow-shop scheduling problems solvable under the sufficient conditions given in Theorems 2 – 4.
Resumo:
A job shop with one batch processing and several discrete machines is analyzed. Given a set of jobs, their process routes, processing requirements, and size, the objective is to schedule the jobs such that the makespan is minimized. The batch processing machine can process a batch of jobs as long as the machine capacity is not violated. The batch processing time is equal to the longest processing job in the batch. The problem under study can be represented as Jm:batch:Cmax. If no batches were formed, the scheduling problem under study reduces to the classical job shop scheduling problem (i.e. Jm:: Cmax), which is known to be NP-hard. This research extends the scheduling literature by combining Jm::Cmax with batch processing. The primary contributions are the mathematical formulation, a new network representation and several solution approaches. The problem under study is observed widely in metal working and other industries, but received limited or no attention due to its complexity. A novel network representation of the problem using disjunctive and conjunctive arcs, and a mathematical formulation are proposed to minimize the makespan. Besides that, several algorithms, like batch forming heuristics, dispatching rules, Modified Shifting Bottleneck, Tabu Search (TS) and Simulated Annealing (SA), were developed and implemented. An experimental study was conducted to evaluate the proposed heuristics, and the results were compared to those from a commercial solver (i.e., CPLEX). TS and SA, with the combination of MWKR-FF as the initial solution, gave the best solutions among all the heuristics proposed. Their results were close to CPLEX; and for some larger instances, with total operations greater than 225, they were competitive in terms of solution quality and runtime. For some larger problem instances, CPLEX was unable to report a feasible solution even after running for several hours. Between SA and the experimental study indicated that SA produced a better average Cmax for all instances. The solution approaches proposed will benefit practitioners to schedule a job shop (with both discrete and batch processing machines) more efficiently. The proposed solution approaches are easier to implement and requires short run times to solve large problem instances.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
This paper deals with the traditional permutation flow shop scheduling problem with the objective of minimizing mean flowtime, therefore reducing in-process inventory. A new heuristic method is proposed for the scheduling problem solution. The proposed heuristic is compared with the best one considered in the literature. Experimental results show that the new heuristic provides better solutions regarding both the solution quality and computational effort.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Esta dissertação apresenta um estudo sobre os problemas de sequenciamento de tarefas de produção do tipo job shop scheduling. Os problemas de sequenciamento de tarefas de produção pretendem encontrar a melhor sequência para o processamento de uma lista de tarefas, o instante de início e término de cada tarefa e a afetação de máquinas para as tarefas. Entre estes, encontram-se os problemas com máquinas paralelas, os problemas job shop e flow shop. As medidas de desempenho mais comuns são o makespan (instante de término da execução de todas as tarefas), o tempo de fluxo total, a soma dos atrasos (tardiness), o atraso máximo, o número de tarefas que são completadas após a data limite, entre outros. Num problema do tipo job shop, as tarefas (jobs) consistem num conjunto de operações que têm de ser executadas numa máquina pré-determinada, obedecendo a um determinado sequenciamento com tempos pré-definidos. Estes ambientes permitem diferentes cenários de sequenciamento das tarefas. Normalmente, não são permitidas interrupções no processamento das tarefas (preemption) e pode ainda ser necessário considerar tempos de preparação dependentes da sequência (sequence dependent setup times) ou atribuir pesos (prioridades) diferentes em função da importância da tarefa ou do cliente. Pretende-se o estudo dos modelos matemáticos existentes para várias variantes dos problemas de sequenciamento de tarefas do tipo job shop e a comparação dos resultados das diversas medidas de desempenho da produção. Este trabalho contribui para demonstrar a importância que um bom sequenciamento da produção pode ter na sua eficiência e consequente impacto financeiro.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.