996 resultados para método dialéctico


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho é analisar in vitro a dissipação de tensões em incisivos centrais superiores humanos restaurados com facetas de cerâmica feldspática, através da análise do método dos elementos finitos, considerando cargas funcionais de mastigação e corte dos alimentos, em função de três tipos de preparos utilizados: sem proteção incisal; com proteção incisal em ângulo e com proteção incisal em degrau palatino. Foram utilizadas modelagens bidimensionais de um incisivo central superior e suas estruturas de suporte, simulando três situações: (Primeira modelagem) incisivo central superior com desgaste vestibular (em forma de janela); (Segunda modelagem) incisivo central superior com desgaste vestibular e proteção incisal em plano inclinado; (Terceira modelagem) incisivo central superior com desgaste vestibular, e proteção incisal com degrau palatino. Foi considerada uma carga (P=100N) com uma inclinação de 45 concentrada, simulando a região de contato do incisivo central inferior com o superior durante a mastigação e uma na região de contato topo a topo dos incisivos superior e inferior, simulando o corte dos alimentos. Após a análise dos dados obtidos pela distribuição de tensões, pode-se concluir que quanto à dissipação das tensões em todo o sistema proposto, com a aplicação de carga em 45, não foram observadas mudanças no estado tensional nos três diferentes preparos. Quando foi aplicada carga vertical, simulando o contato de topo, houve variação no estado tensional no sistema do dente com preparo em janela. Nas facetas, com a aplicação de carga em 45, nos preparos em janela e com proteção incisal em plano inclinado o resultado foi semelhante nos valores tensionais enquanto, nas facetas em dentes preparados com proteção incisal com degrau palatino, a distribuição foi mais homogênea tendo valores superiores, mostrando que o abraçamento do dente diminuiu a flexão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As análises de erros são conduzidas antes de qualquer projeto a ser desenvolvido. A necessidade do conhecimento do comportamento do erro numérico em malhas estruturadas e não-estruturadas surge com o aumento do uso destas malhas nos métodos de discretização. Desta forma, o objetivo deste trabalho foi criar uma metodologia para analisar os erros de discretização gerados através do truncamento na Série de Taylor, aplicados às equações de Poisson e de Advecção-Difusão estacionárias uni e bidimensionais, utilizando-se o Método de Volumes Finitos em malhas do tipo Voronoi. A escolha dessas equações se dá devido a sua grande utilização em testes de novos modelos matemáticos e função de interpolação. Foram usados os esquemas Central Difference Scheme (CDS) e Upwind Difference Scheme(UDS) nos termos advectivos. Verificou-se a influência do tipo de condição de contorno e a posição do ponto gerador do volume na solução numérica. Os resultados analíticos foram confrontados com resultados experimentais para dois tipos de malhas de Voronoi, uma malha cartesiana e outra triangular comprovando a influência da forma do volume finito na solução numérica obtida. Foi percebido no estudo que a discretização usando o esquema CDS tem erros menores do que a discretização usando o esquema UDS conforme literatura. Também se percebe a diferença nos erros em volumes vizinhos nas malhas triangulares o que faz com que não se tenha uma uniformidade nos gráficos dos erros estudados. Percebeu-se que as malhas cartesianas com nó no centróide do volume tem menor erro de discretização do que malhas triangulares. Mas o uso deste tipo de malha depende da geometria do problema estudado

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Desenvolvemos nesta dissertação um método híbrido direto para o cálculo do fator de desvantagem e descrição da distribuição do fluxo de nêutrons em sistemas combustível-moderador. Na modelagem matemática, utilizamos a equação de transporte de Boltzmann independente do tempo, considerando espalhamento linearmente anisotrópico no modelo monoenergético e espalhamento isotrópico no modelo multigrupo, na formulação de ordenadas discretas (SN), em geometria unidimensional. Descrevemos uma análise espectral das equações de ordenadas discretas (SN)a um grupo e a dois grupos de energia, onde seguimos uma analogia com o método de Case. Utilizamos, neste método, quadraturas angulares diferentes no combustível (NC) e no moderador (NM), onde em geral assumimos que NC > NM . Condições de continuidade especiais que acoplam os fluxos angulares que emergem do combustível (moderador) e incidem no moderador (combustível), foram utilizadas com base na equivalência entre as equações SN e PN-1, o que caracteriza a propriedade híbrida do modelo proposto. Sendo um método híbrido direto, utilizamos as NC + NM equações lineares e algébricas constituídas pelas (NC + NM)/2 condições de contorno reflexivas e (NC + NM)/2 condições de continuidade para determinarmos as NC + NM constantes. Com essas constantes podemos calcular os valores dos fluxos angulares e dos fluxos escalares em qualquer ponto do domínio. Apresentamos resultados numéricos para ilustrar a eficiência e a precisão do método proposto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O cálculo do equilíbrio de fases é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Mas para resolvê-lo é aconselhável que se estude a priori a estabilidade termodinâmica do sistema, a qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. Tal problema pode ser abordado como um problema de otimização, conhecido como a minimização da função distância do plano tangente à energia livre de Gibbs molar, onde modelos termodinâmicos, de natureza não convexa e não linear, são utilizados para descrevê-lo. Esse fato tem motivado um grande interesse em técnicas de otimização robustas e eficientes para a resolução de problemas relacionados com a termodinâmica do equilíbrio de fases. Como tem sido ressaltado na literatura, para proporcionar uma completa predição do equilíbrio de fases, faz-se necessário não apenas a determinação do minimizador global da função objetivo do teste de estabilidade, mas também a obtenção de todos os seus pontos estacionários. Assim, o desenvolvimento de metodologias para essa tarefa desafiadora tem se tornado uma nova área de pesquisa da otimização global aplicada à termodinâmica do equilíbrio, com interesses comuns na engenharia química e na engenharia do petróleo. O foco do presente trabalho é uma nova metodologia para resolver o problema do teste de estabilidade. Para isso, usa-se o chamado método do conjunto gerador para realizar buscas do tipo local em uma rede de pontos previamente gerada por buscas globais efetuadas com uma metaheurística populacional, no caso o método do enxame de partículas.Para se obter mais de um ponto estacionário, minimizam-se funções de mérito polarizadas, cujos pólos são os pontos previamente encontrados. A metodologia proposta foi testada na análise de quatorze misturas polares previamente consideradas na literatura. Os resultados mostraram que o método proposto é robusto e eficiente a ponto de encontrar, além do minimizador global, todos os pontos estacionários apontados previamente na literatura, sendo também capaz de detectar, em duas misturas ternárias estudadas, pontos estacionários não obtidos pelo chamado método de análise intervalar, uma técnica confiável e muito difundida na literatura. A análise do teste de estabilidade pela simples utilização do método do enxame de partículas associado à técnica de polarização mencionada acima, para a obtenção de mais de um ponto estacionário (sem a busca local feita pelo método do conjunto gerador em uma dada rede de pontos), constitui outra metodologia para a resolução do problema de interesse. Essa utilização é uma novidade secundária deste trabalho. Tal metodologia simplificada exibiu também uma grande robustez, sendo capaz de encontrar todos os pontos estacionários pesquisados. No entanto, quando comparada com a abordagem mais geral proposta aqui, observou-se que tal simplificação pode, em alguns casos onde a função de mérito apresenta uma geometria mais complexa, consumir um tempo de máquina relativamente grande, dessa forma é menos eficiente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homenaje a Georges Laplace, realizado en Vitoria-Gasteiz el 13,14 y 15 de noviembre de 2012. Edición a cargo de Aitor Calvo, Aitor Sánchez, Maite García-Rojas y Mónica Alonso-Eguíluz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os métodos numéricos convencionais, baseados em malhas, têm sido amplamente aplicados na resolução de problemas da Dinâmica dos Fluidos Computacional. Entretanto, em problemas de escoamento de fluidos que envolvem superfícies livres, grandes explosões, grandes deformações, descontinuidades, ondas de choque etc., estes métodos podem apresentar algumas dificuldades práticas quando da resolução destes problemas. Como uma alternativa viável, existem os métodos de partículas livre de malhas. Neste trabalho é feita uma introdução ao método Lagrangeano de partículas, livre de malhas, Smoothed Particle Hydrodynamics (SPH) voltado para a simulação numérica de escoamentos de fluidos newtonianos compressíveis e quase-incompressíveis. Dois códigos numéricos foram desenvolvidos, uma versão serial e outra em paralelo, empregando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA), que possibilita o processamento em paralelo empregando os núcleos das Graphics Processing Units (GPUs) das placas de vídeo da NVIDIA Corporation. Os resultados numéricos foram validados e a eficiência computacional avaliada considerandose a resolução dos problemas unidimensionais Shock Tube e Blast Wave e bidimensional da Cavidade (Shear Driven Cavity Problem).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O esquema iterativo de fonte de espalhamento (SI) é tradicionalmente aplicado para a convergência da solução numérica de malha fina para problemas de transporte de nêutrons monoenergéticos na formulação de ordenadas discretas com fonte fixa. O esquema SI é muito simples de se implementar sob o ponto de vista computacional; porém, o esquema SI pode apresentar taxa de convergência muito lenta, principalmente para meios difusivos (baixa absorção) com vários livres caminhos médios de extensão. Nesta dissertação descrevemos uma técnica de aceleração baseada na melhoria da estimativa inicial para a distribuição da fonte de espalhamento no interior do domínio de solução. Em outras palavras, usamos como estimativa inicial para o fluxo escalar médio na grade de discretização de malha fina, presentes nos termos da fonte de espalhamento das equações discretizadas SN usadas nas varreduras de transporte, a solução numérica da equação da difusão de nêutrons em grade espacial de malha grossa com condições de contorno especiais, que aproximam as condições de contorno prescritas que são clássicas em cálculos SN, incluindo condições de contorno do tipo vácuo. Para aplicarmos esta solução gerada pela equação da difusão em grade de discretização de malha grossa nas equações discretizadas SN de transporte na grade de discretização de malha fina, primeiro implementamos uma reconstrução espacial dentro de cada nodo de discretização, e então determinamos o fluxo escalar médio em grade de discretização de malha fina para usá-lo nos termos da fonte de espalhamento. Consideramos um número de experimentos numéricos para ilustrar a eficiência oferecida pela presente técnica (DSA) de aceleração sintética de difusão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um método de matriz resposta (RM) é descrito para gerar soluções numéricas livres de erros de truncamento espacial para problemas de transporte de nêutrons monoenergéticos e com fonte fixa, em geometria unidimensional na formulação de ordenadas discretas (SN). O método RM com esquema iterativo de inversão parcial por região (RBI) converge valores numéricos para os fluxos angulares nas fronteiras das regiões que coincidem com os valores da solução analítica das equações SN, afora os erros de arredondamento da aritmética finita computacional. Desenvolvemos um esquema numérico de reconstrução espacial, que fornece a saída para os fluxos escalares de nêutrons em qualquer ponto do domínio definido pelo usuário, com um passo de avanço também escolhido pelo usuário. Resultados numéricos são apresentados para ilustrar a precisão do presente método em cálculos de malha grossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um método numérico nodal livre de erros de truncamento espacial é desenvolvido para problemas adjuntos de transporte de partículas neutras monoenergéticas em geometria unidimensional com fonte fixa na formulação de ordenadas discretas (SN). As incógnitas no método são os fluxos angulares adjuntos médios nos nodos e os fluxos angulares adjuntos nas fronteiras dos nodos, e os valores numéricos gerados para essas quantidades são os obtidos a partir da solução analítica das equações SN adjuntas. O método é fundamentado no uso da convencional equação adjunta SN discretizada de balanço espacial, que é válida para cada nodo de discretização espacial e para cada direção discreta da quadratura angular, e de uma equação auxiliar adjunta não convencional, que contém uma função de Green para os fluxos angulares adjuntos médios nos nodos em termos dos fluxos angulares adjuntos emergentes das fronteiras dos nodos e da fonte adjunta interior. Resultados numéricos são fornecidos para ilustrarem a precisão do método proposto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

.INTRODUCCIÓN. 1.1. COMPUESTOS 1,3 - DICARBONÍLICOS. METILENOS ACTIVOS. Los compuestos 1,3 - dicarbonílicos son uno de los bloques sintéticos más utilizados a lo largo de la historia de la síntesis orgánica. Esto se debe a sus múltiples centros de reactividad: dos centros reactivos electrófilos y hasta cinco centros nucleófilos, como se puede ver en la Figura 1, que permiten r ealizar infinidad de secuencias de reacciones para generar moléculas complejas. 1 R R O O Figura 1 . Centros reactivos de los compuestos 1,3 - dicarbonílicos. Se conoce un gran número de reacciones para esta familia de compuestos pero en este texto nos vamos a centrar en estudiar tres casos especialmente característicos por el potencial sintético que proporcionan, y que están muy relacionados con el hecho de que los hidrógenos de la agrupación metilénica son especialmente ácidos. Por ejemplo, el pKa de estos protones, en el caso del malonato de dietilo es de 13 unidades, mientras que el de su éster simple es de 24. 2 Esta notable diferencia en la acidez se explica fácilmente por la diferente estabilidad de los aniones enolatos correspondientes para los que la deslocalización de carga por resonancia está más extendida en el primer caso (Figura 2). Figura 2 . Representación de las formas resonantes del anión enolato malonato de dietilo. EtO OEt O O - EtO OEt O O EtO OEt O - O Nu Nu Nu Nu Nu E E 2 Las reacciones más conocidas que se aprovechan de esta característica estructural son, probablemente, la reacción de Knoevenagel, la síntesis malónica y acetilacética y un buen número de reacciones multicomponente, para los que haremos unos comentarios particulares en los siguientes apartados

Relevância:

20.00% 20.00%

Publicador:

Resumo:

785p. -- De forma paralela al proceso de investigación para esta Tesis el investigador llevó a cabo un documental de 80 minutos de duración, titulado "Oteiza y el Centro Cultural Alhóndiga. Proyecto estético para Bilbao". Este documental está elaborado a partir de las entrevistas arriba señaladas, así como de material audiovisual inédito sobre este proyecto. El documental está expuesto de forma permanente en el Museo Jorge Oteiza (Alzuza, Navarra)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho é descrita a teoria necessária para a obtenção da grandeza denominada intensidade supersônica, a qual tem por objetivo identificar as regiões de uma fonte de ruído que efetivamente contribuem para a potência sonora, filtrando, consequentemente, a parcela referente às ondas sonoras recirculantes e evanescentes. É apresentada a abordagem de Fourier para a obtenção da intensidade supersônica em fontes com geometrias separáveis e a formulação numérica existente para a obtenção de um equivalente à intensidade supersônica em fontes sonoras com geometrias arbitrárias. Este trabalho apresenta como principal contribuição original, uma técnica para o cálculo de um equivalente à intensidade supersônica, denominado aqui de intensidade acústica útil, capaz de identificar as regiões de uma superfície vibrante de geometria arbitrária que efetivamente contribuem para a potência sonora que será radiada. Ao contrário da formulação numérica existente, o modelo proposto é mais direto, totalmente formulado na superfície vibrante, onde a potência sonora é obtida através de um operador (uma matriz) que relaciona a potência sonora radiada com a distribuição de velocidade normal à superfície vibrante, obtida com o uso do método de elementos finitos. Tal operador, chamado aqui de operador de potência, é Hermitiano, fato crucial para a obtenção da intensidade acússtica útil, após a aplicação da decomposição em autovalores e autovetores no operador de potência, e do critério de truncamento proposto. Exemplos de aplicações da intensidade acústica útil em superfícies vibrantes com a geometria de uma placa, de um cilindro com tampas e de um silenciador automotivo são apresentados, e os resultados são comparados com os obtidos via intensidade supersônica (placa) e via técnica numérica existente (cilindro), evidenciando que a intensidade acústica útil traz, como benefício adicional, uma redução em relação ao tempo computacional quando comparada com a técnica numérica existente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uma análise utilizando a série de Taylor é apresentada para se estimar a priori os erros envolvidos na solução numérica da equação de advecção unidimensional com termo fonte, através do Método dos Volumes Finitos em uma malha do tipo uniforme e uma malha não uniforme. Também faz-se um estudo a posteriori para verificar a magnitude do erro de discretização e corroborar os resultados obtidos através da análise a priori. Por meio da técnica de solução manufaturada tem-se uma solução analítica para o problema, a qual facilita a análise dos resultados numéricos encontrados, e estuda-se ainda a influência das funções de interpolação UDS e CDS e do parâmetro u na solução numérica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editoras Rosa Rabadán; Trinidad Guzmán; Marisa Fernández.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: El Método de la Madre Canguro (MMC) es un sistema de cuidado neonatal que consiste en el contacto piel con piel de la madre y su hijo de forma precoz, continuada y mantenida en el tiempo. Objetivo: Describir los efectos del uso del Método de la Madre Canguro en la madre y en el neonato. Metodología: Se ha realizado una búsqueda bibliográfica en diferentes bases de datos para recopilar revisiones sistemáticas, ensayos clínicos y estudios cualitativos acerca del MMC. La búsqueda se realizó entre Noviembre de 2014 y Febrero de 2015. Finalmente fueron seleccionados 17 artículos para la realización de este trabajo. Conclusión: Parece probado que la práctica del Método de la Madre Canguro resulta beneficiosa tanto para la madre como para el neonato. Es necesario avanzar más en la protocolización del método y en la investigación científica de sus efectos, para poder aumentar su fiabilidad y convertirlo en un método más eficaz y seguro.