921 resultados para low-cycle fatigue
Resumo:
选用40Cr结构钢,分别在空气、水和3.5%NaCl水溶液中进行旋转弯曲疲劳实验,研究环境介质对该结构钢高周和超高周疲劳特性的影响.结果表明,40Cr钢在水环境中的疲劳强度比在空气中明显降低;在3.5%NaCl水溶液环境中的疲劳强度比在水中低.断面观察显示,在水和3.5%NaCl水溶液中,疲劳裂纹多源萌生;在稳态扩展阶段,裂纹沿晶界扩展并存在广泛分布的沿晶二次裂纹.
Resumo:
合金材料在超高周疲劳下具有与低周和高周疲劳不同的裂纹萌生和扩展行为以及不同的S-N曲线特征.材料的强度、循环加载的频率、所处的环境等都显著影响超高周疲劳的特性.本文综述了合金材料超高周疲劳行为的基本特征和影响因素的研究进展.
Resumo:
The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater need for electricity storage. Although there are many existing and emerging storage technologies, most have limitations in terms of geographical constraints, high capital cost or low cycle life, and few are of sufficient scale (in terms of both power and storage capacity) for integration at the transmission and distribution levels. This paper is concerned with a relatively new concept which will be referred to here as Pumped Thermal Electricity Storage (PTES), and which may be able to make a significant contribution towards future storage needs. During charge, PTES makes use of a high temperature-ratio heat pump to convert electrical energy into thermal energy which is stored as ‘sensible heat’ in two thermal reservoirs, one hot and one cold. When required, the thermal energy is then converted back to electricity by effectively running the heat pump backwards as a heat engine. The paper focuses on thermodynamic aspects of PTES, including energy and power density, and the various sources of irreversibility and their impact on round-trip efficiency.
Resumo:
La presente tesi di Laurea Magistrale ha lo scopo di studiare sperimentalmente il comportamento a fatica dei calcestruzzi rinforzati con fibre macro-sintetiche (Macro Synthetic Fiber Reinforced Concrete, MSFRC). Sono condotte prove cicliche di flessione su tre punti al fine di caratterizzare il comportamento dei calcestruzzi fibrorinforzati in regime fessurato nel caso di fatica ad alto numero di cicli (High Cycle Fatigue, HCF). Oltre a prove di fatica sono condotte anche prove monotone a flessione al fine di ottenere la caratterizzazione meccanica del materiale determinandone i principali parametri di frattura; i risultati di tali prove sono utili anche a definire la procedura di prova definitiva da adottare durante i test di fatica. Le testimonianze presenti in letteratura sul comportamento a fatica degli FRC rinforzati con fibre sintetiche sono molto limitate, specialmente nel caso di fatica ad alto numero di cicli; inoltre le prove cicliche, a differenza delle prove monotone, non sono prove standardizzate e quindi definite dalla normativa. Nel corso della presente campagna sperimentale si cercherà quindi di definire una procedura per poter eseguire in maniera stabile le prove di flessione, monotone e di fatica, su campioni prismatici di calcestruzzo fibrorinforzato. L’idea alla base della campagna sperimentale oggetto di questa tesi è quella di riprodurre, mediante prove di fatica, le usuali condizioni di esercizio a cui sono sottoposte, durante la loro vita utile, strutture come pavimentazioni stradali o industriali; infatti il traffico stradale o il transito di macchinari possono indurre su strutture del genere dei carichi ripetuti nel tempo tali da provocarne il collasso per fatica. La presente tesi è articolata in otto capitoli nei quali verranno evidenziate le principali proprietà, sia meccaniche che fisiche, del materiale composito oggetto dello studio, saranno definite le procedure dei test eseguiti e verranno discussi i risultati derivanti da essi.
Resumo:
The purpose of this study was to examine the effects of different methods of measuring training volume, controlled in different ways, on selected variables that reflect acute neuromuscular responses. Eighteen resistance-trained males performed three fatiguing protocols of dynamic constant external resistance exercise, involving elbow flexors, that manipulated either time-under-tension (TUT) or volume load (VL), defined as the product of training load and repetitions. Protocol A provided a standard for TUT and VL. Protocol B involved the same VL as Protocol A but only 40% concentric TUT; Protocol C was equated to Protocol A for TUT but only involved 50% VL. Fatigue was assessed by changes in maximum voluntary isometric contraction (MVIC), interpolated doublet (ID), muscle twitch characteristics (peak twitch, time to peak twitch, 0.5 relaxation time, and mean rates of force development and twitch relaxation). All protocols produced significant changes (P
Resumo:
Mechanical fatigue is a failure phenomenon that occurs due to repeated application of mechanical loads. Very High Cycle Fatigue (VHCF) is considered as the domain of fatigue life greater than 10 million load cycles. Increasing numbers of structural components have service life in the VHCF regime, for instance in automotive and high speed train transportation, gas turbine disks, and components of paper production machinery. Safe and reliable operation of these components depends on the knowledge of their VHCF properties. In this thesis both experimental tools and theoretical modelling were utilized to develop better understanding of the VHCF phenomena. In the experimental part, ultrasonic fatigue testing at 20 kHz of cold rolled and hot rolled stainless steel grades was conducted and fatigue strengths in the VHCF regime were obtained. The mechanisms for fatigue crack initiation and short crack growth were investigated using electron microscopes. For the cold rolled stainless steels crack initiation and early growth occurred through the formation of the Fine Granular Area (FGA) observed on the fracture surface and in TEM observations of cross-sections. The crack growth in the FGA seems to control more than 90% of the total fatigue life. For the hot rolled duplex stainless steels fatigue crack initiation occurred due to accumulation of plastic fatigue damage at the external surface, and early crack growth proceeded through a crystallographic growth mechanism. Theoretical modelling of complex cracks involving kinks and branches in an elastic half-plane under static loading was carried out by using the Distributed Dislocation Dipole Technique (DDDT). The technique was implemented for 2D crack problems. Both fully open and partially closed crack cases were analyzed. The main aim of the development of the DDDT was to compute the stress intensity factors. Accuracy of 2% in the computations was attainable compared to the solutions obtained by the Finite Element Method.
Resumo:
Demagnetization to zero remanent value or to a predetermined value is of interest to magnet manufacturers and material users. Conventional methods of demagnetization using a varying alternating demagnetizing field, under a damped oscillatory or conveyor system, result in either high cost for demagnetization or large power dissipation. A simple technique using thyristors is presented for demagnetizing the material. Power consumption is mainly in the first two half-cycles of applied voltage. Hence power dissipation is very much reduced. An optimum value calculation for a thyristor triggering angle for demagnetizing high coercive materials is also presented.
Resumo:
A polymorphic ASIC is a runtime reconfigurable hardware substrate comprising compute and communication elements. It is a ldquofuture proofrdquo custom hardware solution for multiple applications and their derivatives in a domain. Interoperability between application derivatives at runtime is achieved through hardware reconfiguration. In this paper we present the design of a single cycle Network on Chip (NoC) router that is responsible for effecting runtime reconfiguration of the hardware substrate. The router design is optimized to avoid FIFO buffers at the input port and loop back at output crossbar. It provides virtual channels to emulate a non-blocking network and supports a simple X-Y relative addressing scheme to limit the control overhead to 9 bits per packet. The 8times8 honeycomb NoC (RECONNECT) implemented in 130 nm UMC CMOS standard cell library operates at 500 MHz and has a bisection bandwidth of 28.5 GBps. The network is characterized for random, self-similar and application specific traffic patterns that model the execution of multimedia and DSP kernels with varying network loads and virtual channels. Our implementation with 4 virtual channels has an average network latency of 24 clock cycles and throughput of 62.5% of the network capacity for random traffic. For application specific traffic the latency is 6 clock cycles and throughput is 87% of the network capacity.
Resumo:
An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.
Resumo:
Turbine inlet pressures of similar to 300 bar in case of CO2 based cycles call for redesigning the cycle in such a way that the optimum high side pressures are restricted to the discharge pressure limits imposed by currently available commercial compressors (similar to 150 bar) for distributed power generation. This leads to a cycle which is a combination of a transcritical condensing and a subcritical cycle with an intercooler and a bifurcation system in it. Using a realistic thermodynamic model, it is predicted that the cycle with the working fluid as a non-flammable mixture of 48.5 % propane and rest CO2 delivers similar to 37.2 % efficiency at 873 K with a high and a low side pressure of 150 and 26 bar respectively. This is in contrast to the best efficiency of similar to 36.1 % offered by a transcritical condensing cycle with the same working fluid at a high side pressure of similar to 300 bar
Resumo:
Ensuring reliable energy efficient data communication in resource constrained Wireless Sensor Networks (WSNs) is of primary concern. Traditionally, two types of re-transmission have been proposed for the data-loss, namely, End-to-End loss recovery (E2E) and per hop. In these mechanisms, lost packets are re-transmitted from a source node or an intermediate node with a low success rate. The proliferation routing(1) for QoS provisioning in WSNs low End-to-End reliability, not energy efficient and works only for transmissions from sensors to sink. This paper proposes a Reliable Proliferation Routing with low Duty Cycle RPRDC] in WSNs that integrates three core concepts namely, (i) reliable path finder, (ii) a randomized dispersity, and (iii) forwarding. Simulation results demonstrates that packet successful delivery rate can be maintained upto 93% in RPRDC and outperform Proliferation Routing(1). (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).