921 resultados para litium-ion batteries


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using Si(100) with different dopant type (n++-type (As) or p-type (B)), it is shown how metal-assisted chemically (MAC) etched silicon nanowires (Si NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. High resolution electron microscopy techniques were used to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. Control of roughness and internal mesoporosity is demonstrated during the formation of Si NWs from highly doped n-type Si(100) during electroless etching through a systematic investigation of etching parameters (etching time, AgNO3 concentration, %HF and temperature). Raman scattering measurements of the transverse optical phonon confirm quantum size effects and phonon scattering in mesoporous wires associated with the etching condition, including quantum confinement effects for the nanocrystallites of Si comprising the internal structure of the mesoporous NWs. Laser power heating of NWs confirms phonon confinement and scattering from internal mesoporosity causing reduced thermal conductivity. The Li+ insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. X-ray photo-electron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity. The effect of dopant, doping density and porosity of MAC etched Si NWs are investigated. The CV response is shown to change in area (current density) with increasing NW length and in profile shape with a changing porosity of the Si NWs. The CV response also changes with scan rate indicative of a transition from intercalation or alloying reactions, to pseudocapactive charge storage at higher scan rates and for p-type NWs. SEM and TEM show a change in structure of the NWs after Li insertion and extraction due to expansion and contraction of the Si NWs. Galvanostatic measurements show the cycling behavior and the Coulombic efficiency of the Si NWs in comparison to their bulk counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents several routes towards achieving artificial opal templates by colloidal self-assembly of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres and the use of these template for the fabrication of V2O5 inverse opals as cathode materials for lithium ion battery applications. First, through the manipulation of different experimental factors, several methods of affecting or directing opal growth towards realizing different structures, improving order and/or achieving faster formation on a variety of substrates are presented. The addition of the surfactant sodium dodecyl sulphate (SDS) at a concentration above the critical micelle concentration for SDS to a 5 wt% solution of PMMA spheres before dip-coating is presented as a method of achieving ordered 2D PhC monolayers on hydrophobic Au-coated silicon substrates at fast and slow rates of withdrawal. The effect that the degree of hydrophilicity of glass substrates has on the ordering of PMMA spheres is next investigated for a slow rate of withdrawal under noise agitation. Heating of the colloidal solution is also presented as a means of affecting order and thickness of opal deposits formed using fast rate dip coating. E-beam patterned substrates are shown as a means of altering the thermodynamically favoured FCC ordering of polystyrene spheres (PS) when dip coated at slow rate. Facile routes toward the synthesis of ordered V2O5 inverse opals are presented with direct infiltration of polymer sphere templates using liquid precursor. The use of different opal templates, both 2D and 3D partially ordered templates, is compared and the composition and arrangement of the subsequent IO structures post infiltration and calcination for various procedures is characterised. V2O5 IOs are also synthesised by electrodeposition from an aqueous VOSO4 solution at constant voltage. Electrochemical characterisation of these structures as cathode material for Li-ion batteries is assessed in a half cell arrangement for samples deposited on stainless steel foil substrates. Improved rate capabilities are demonstrated for these materials over bulk V2O5, with the improvement attributed to the shorter Li ion diffusion distances and increased electrolyte infiltration provided by the IO structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, lackluster battery capability is restricting the widespread integration of Smart Grids, limiting the long-term feasibility of alternative, green energy conversion technologies. Silicon nanoparticles have great conductivity for applications in rechargeable batteries, but have degradation issues due to changes in volume during lithiation/delithiation cycles. To combat this, we use electrochemical deposition to uniformly space silicon particles on graphene sheets to create a more stable structure. We found the process of electrochemical deposition degraded the graphene binding in the electrode material, severely reducing charge capacity. But, the usage of mechanically mixing silicon particles with grapheme yielded batteries better than those that are commercially available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present in this study the effect of nature and concentration of lithium salt, such as the lithium hexafluorophosphate, LiPF6; lithium tris(pentafluoroethane)-trifluorurophosphate LiFAP; lithium bis(trifluoromethylsulfonyl)imide, LiTFSI, on the CO2 solubility in four electrolytes for lithium ion batteries based on pure solvent that include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), as well as, in the EC:DMC, EC:EMC and EC:DEC (50:50) wt.% binary mixtures as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility values, the Henry’s law constant of the carbon dioxide in these solutions with the presence or absence of lithium salt was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOThermX software. From this study, it appears that the addition of 1 mol · dm-3 LiPF6 salt in alkylcarbonate solvents decreases their CO2 capture capacity. By using the same experimental conditions, an opposite CO2 solubility trend was generally observed in the case of the addition of LiFAP or LiTFSI salts in these solutions. Additionally, in all solutions investigated during this work, the CO2 solubility is greater in electrolytes containing the LiFAP salt, followed by those based on the LiTFSI case. The precision and accuracy of the experimental data reported therein, which are close to (1 and 15)%, respectively. From the variation of the Henry’s law constant with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state were calculated. Finally, a quantitative analysis of the CO2 solubility evolution was carried out in the EC:DMC (50:50) wt.% binary mixture as the function of the LiPF6 or LiTFSI concentration in solution to elucidate how ionic species modify the CO2 solubility in alkylcarbonates-based Li-ion electrolytes by investigating the salting effects at T = 298.15 K and atmospheric pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract
Nano-sized(nO-Co3O4, 387nm)andmicron-sized(mO-Co3O4, 6.65 mm) Co3O4 octahedraenclosedby
{111}facetshavebeenbothsynthesizedthroughawetchemicalmethodfollowedbythermal
treatment,andservedasanodematerialoflithium ionbatteries(LIBs).Electrochemicalresults
demonstratethatthenO-Co3O4 showsexcellentlongcyclabilityandratecapability.ThenO-Co3O4
candeliverastablechargecapacityashighas955.5mAhg1 upto200cycleswithoutnoticeable
capacityfadingatacharge/dischargecurrentdensityof0.1Ag1 (ca. 0.11C).Theexcellent
electrochemicalperformanceisascribedtothenano-sizeandthe{111}facetsthatenclosethe
octahedra. WhilethemO-Co3O4 could onlymaintain288.5mAhg1 after 200cycles,illustratingvery
poorcyclingperformance,whichisascribedtothelargeparticlesizethatmaycausehugevolume
changeduringrepeatedcharging/discharging process.TheresultsrevealthattheCo3O4 nano-
octahedrawouldbeapromisinganodematerialforthenext-generationofLIBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,

&lt;img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif"&gt;PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP; bis(trifluoromethylsulfonyl)imide, TFSI) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium-ion batteries have been widely adopted in electric vehicles (EVs), and accurate state of charge (SOC) estimation is of paramount importance for the EV battery management system. Though a number of methods have been proposed, the SOC estimation for Lithium-ion batteries, such as LiFePo4 battery, however, faces two key challenges: the flat open circuit voltage (OCV) vs SOC relationship for some SOC ranges and the hysteresis effect. To address these problems, an integrated approach for real-time model-based SOC estimation of Lithium-ion batteries is proposed in this paper. Firstly, an auto-regression model is adopted to reproduce the battery terminal behaviour, combined with a non-linear complementary model to capture the hysteresis effect. The model parameters, including linear parameters and non-linear parameters, are optimized off-line using a hybrid optimization method that combines a meta-heuristic method (i.e., the teaching learning based optimization method) and the least square method. Secondly, using the trained model, two real-time model-based SOC estimation methods are presented, one based on the real-time battery OCV regression model achieved through weighted recursive least square method, and the other based on the state estimation using the extended Kalman filter method (EKF). To tackle the problem caused by the flat OCV-vs-SOC segments when the OCV-based SOC estimation method is adopted, a method combining the coulombic counting and the OCV-based method is proposed. Finally, modelling results and SOC estimation results are presented and analysed using the data collected from LiFePo4 battery cell. The results confirmed the effectiveness of the proposed approach, in particular the joint-EKF method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li-rich materials are considered the most promising for Li-ion battery cathodes, as high capacity can be achieved. However, poor cycling stability is a critical drawback that leads to poor capacity retention. Here a strategy is used to synthesize a large-grain lithium-rich layered oxides to overcome this difficulty without sacrificing rate capability. This material is designed with micron scale grain with a width of about 300 nm and length of 1-3 μm. This unique structure has a better ability to overcome stress-induced structural collapse caused by Li-ion insertion/extraction and reduce the dissolution of Mn ions, which enable a reversible and stable capacity. As a result, this cathode material delivered a highest discharge capacity of around 308 mAh g-1 at a current density of 30 mA g-1 with retention of 88.3% (according to the highest discharge capacity) after 100 cycles, 190 mAh g-1 at a current density of 300 mA g-1 and almost no capacity fading after 100 cycles. Therefore, Lithium-rich material of large-grain structure is a promising cathode candidate in Lithium-ion batteries with high capacity and high cycle stability for application. This strategy of large grain may furthermore open the door to synthesize the other complex architectures for various applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g-1 at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g-1 over 300 cycles at the current density of 5.2 A g-1 (6C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a simple strategy, which is based on the idea of space confinement, for the synthesis of carbon coating on LiFePO4 nanoparticles/graphene nanosheets composites in a water-in-oil emulsion system. The prepared composite displayed high performance as a cathode material for lithium-ion battery, such as high reversible lithium storage capacity (158 mA h g-1 after 100 cycles), high coulombic efficiency (over 97%), excellent cycling stability and high rate capability (as high as 83 mA h g -1 at 60 C). Very significantly, the preparation method employed can be easily adapted and be extended as a general approach to sophisticated compositions and structures for the preparation of highly dispersed nanosized structure on graphene. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile method to synthesize well-dispersed TiO2 quantum dots on graphene nanosheets (TiO2-QDs/GNs) in a water-in-oil (W/O) emulsion system is reported. The TiO2/graphene composites display high performance as an anode material for lithium-ion batteries (LIBs), such as having high reversible lithium storage capacity, high Coulombic efficiency, excellent cycling stability, and high rate capability. The excellent electrochemical performance and special structure of the composites thus offer a way to prepare novel graphene-based electrode materials for high-energy-density and high-power LIBs. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.