917 resultados para linear mixed model
Resumo:
In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^
Resumo:
The influence of climate on forest stand composition, development and growth is undeniable. Many studies have tried to quantify the effect of climatic variables on forest growth and yield. These works become especially important because there is a need to predict the effects of climate change on the development of forest ecosystems. One of the ways of facing this problem is the inclusion of climatic variables into the classic empirical growth models. The work has a double objective: (i) to identify the indicators which best describe the effect of climate on Pinus halepensis growth and (ii) to quantify such effect in several scenarios of rainfall decrease which are likely to occur in the Mediterranean area. A growth mixed model for P. halepensis including climatic variables is presented in this work. Growth estimates are based on data from the Spanish National Forest Inventory (SNFI). The best results are obtained for the indices including rainfall, or rainfall and temperature together, with annual precipitation, precipitation effectiveness, Emberger?s index or free bioclimatic intensity standing out among them. The final model includes Emberger?s index, free bioclimatic intensity and interactions between competition and climate indices. The results obtained show that a rainfall decrease about 5% leads to a decrease in volume growth of 5.5?7.5% depending on site quality.
Resumo:
The continuous improvement of management and assessment processes for curricular external internships has led a group of university teachers specialised in this area to develop a mixed model of measurement that combines the verification of skill acquisition by those students choosing external internships with the satisfaction of the parties involved in that process. They included academics, educational tutors of companies and organisations and administration and services personnel in the latter category. The experience, developed within University of Alicante, has been carried out in the degrees of Business Administration and Management, Business Studies, Economics, Advertising and Public Relations, Sociology and Social Work, all part of the Faculty of Economics and Business. By designing and managing closed standardised interviews and other research tools, validated outside the centre, a system of continuous improvement and quality assurance has been created, clearly contributing to the gradual increase in the number of students with internships in this Faculty, as well as to the improvement in satisfaction, efficiency and efficacy indicators at a global level. As this experience of educational innovation has shown, the acquisition of curricular knowledge, skills, abilities and competences by the students is directly correlated with the satisfaction of those parties involved in a process that takes the student beyond the physical borders of a university campus. Ensuring the latter is a task made easier by the implementation of a mixed assessment method, combining continuous and final assessment, and characterised by its rigorousness and simple management. This report presents that model, subject in turn to a persistent and continuous control, a model all parties involved in the external internships are taking part of. Its short-term results imply an increase, estimated at 15% for the last course, in the number of students choosing curricular internships and, for the medium and long-term, a major interweaving between the academic world and its social and productive environment, both in the business and institutional areas. The potentiality of this assessment model does not lie only in the quality of its measurement tools, but also in the effects from its use in the various groups and in the actions that are carried out as a result of its implementation and which, without any doubt and as it is shown below, are the real guarantee of a continuous improvement.
Resumo:
rrreg fits a linear probability model for randomized response data
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"March 1984."
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
When studying genotype X environment interaction in multi-environment trials, plant breeders and geneticists often consider one of the effects, environments or genotypes, to be fixed and the other to be random. However, there are two main formulations for variance component estimation for the mixed model situation, referred to as the unconstrained-parameters (UP) and constrained-parameters (CP) formulations. These formulations give different estimates of genetic correlation and heritability as well as different tests of significance for the random effects factor. The definition of main effects and interactions and the consequences of such definitions should be clearly understood, and the selected formulation should be consistent for both fixed and random effects. A discussion of the practical outcomes of using the two formulations in the analysis of balanced data from multi-environment trials is presented. It is recommended that the CP formulation be used because of the meaning of its parameters and the corresponding variance components. When managed (fixed) environments are considered, users will have more confidence in prediction for them but will not be overconfident in prediction in the target (random) environments. Genetic gain (predicted response to selection in the target environments from the managed environments) is independent of formulation.
Resumo:
Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP (FLP) problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to (1) the decision variables; (2) the coefficients of the decision variables in the objective function; (3) the coefficients of the decision variables in the constraints; (4) the right-hand-side of the constraints; or (5) all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms. © 2013-IOS Press and the authors. All rights reserved.