898 resultados para linear and nonlinear systems identification
Resumo:
We present a new class of multi-channel Fiber Bragg grating, which provides the characteristics of channelized dispersion but does so with only a single reflection band. Such gratings can provide pure phase control of optical pulses without introducing any deleterious insertion-loss-variation. © 2006 Optical Society of America.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Linear and nonlinear thermal instability of Newtonian and non-Newtonian fluid saturated porous media
Resumo:
The present work aims to investigate the influence of different aspects, such as non-standard steady solutions, complex fluid rheologies and non-standard porous-channel geometries, on the stability of a Darcy-Bénard system. In order to do so, both linear and nonlinear stability theories are considered. A linear analysis focuses on studying the dynamics of the single disturbance wave present in the system, while its nonlinear counterpart takes into consideration the interactions among the single modes. The scope of the stability analysis is to obtain information regarding the transition from an equilibrium solution to another one, and also information regarding the transition nature and the emergent solution after the transition. The disturbance governing equations are solved analytically, whenever possible, and numerical by considering different approaches. Among other important results, it is found that a cylinder cross-section does not affect the thermal instability threshold, but just the linear pattern selection for dilatant and pseudoplastic fluid saturated porous media. A new rheological model is proposed as a solution for singular issues involving the power-law model. Also, a generalised class of one parameter basic solutions is proposed as an alternative description of the isoflux Darcy--Bénard problem. Its stability is investigated.
Resumo:
Work-related flow is defined as a sudden and enjoyable merging of action and awareness that represents a peak experience in the daily lives of workers. Employees" perceptions of challenge and skill and their subjective experiences in terms of enjoyment, interest and absorption were measured using the experience sampling method, yielding a total of 6981 observations from a sample of 60 employees. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes. According to the R2, AICc and BIC indexes, the nonlinear dynamical systems model (i.e. cusp catastrophe model) fit the data better than the linear and logistic regression models. Likewise, the cusp catastrophe model appears to be especially powerful for modelling those cases of high levels of flow. Overall, flow represents a nonequilibrium condition that combines continuous and abrupt changes across time. Research and intervention efforts concerned with this process should focus on the variable of challenge, which, according to our study, appears to play a key role in the abrupt changes observed in work-related flow.
Resumo:
Implicit dynamic-algebraic equations, known in control theory as descriptor systems, arise naturally in many applications. Such systems may not be regular (often referred to as singular). In that case the equations may not have unique solutions for consistent initial conditions and arbitrary inputs and the system may not be controllable or observable. Many control systems can be regularized by proportional and/or derivative feedback.We present an overview of mathematical theory and numerical techniques for regularizing descriptor systems using feedback controls. The aim is to provide stable numerical techniques for analyzing and constructing regular control and state estimation systems and for ensuring that these systems are robust. State and output feedback designs for regularizing linear time-invariant systems are described, including methods for disturbance decoupling and mixed output problems. Extensions of these techniques to time-varying linear and nonlinear systems are discussed in the final section.
Resumo:
3. PRACTICAL RESOLUTION OF DIFFERENTIAL SYSTEMS by Marilia Pires, University of Évora, Portugal This practice presents the main features of a free software to solve mathematical equations derived from concrete problems: i.- Presentation of Scilab (or python) ii.- Basics (number, characters, function) iii.- Graphics iv.- Linear and nonlinear systems v.- Differential equations
Resumo:
This thesis work has been motivated by an internal benchmark dealing with the output regulation problem of a nonlinear non-minimum phase system in the case of full-state feedback. The system under consideration structurally suffers from finite escape time, and this condition makes the output regulation problem very hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator. This situation leads to studying the approaches developed for controlling Non-minimum phase systems and how they affect feedback performances. Despite a lot of frequency domain results, only a few works have been proposed for describing the performance limitations in a state space system representation. In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer Decomposition. Such decomposition allows splitting the Non-minimum phase system under consideration into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the original system and an all-pass Non-minimum phase system (the inner) that contains all the unavoidable pathologies of the unstable zero dynamics. Such a cascade decomposition was inspiring to start working on functional observers for linear and nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured signals from the system to asymptotically reconstruct a certain function of the system states, without necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain state functional plays an important role in the design of a feedback controller able to stabilize the Non-minimum phase system.
Resumo:
This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.