842 resultados para life-history traits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive species pose a major threat to biodiversity but provide an opportunity to describe the processes that lead to changes in a species’ range. The bank vole (Myodes glareolus) is an invasive rodent that was introduced to Ireland in the early twentieth century. Given its continuing range expansion, the substantial empirical data on its spread thus far, and the absence of any eradication program, the bank vole in Ireland represents a unique model system for studying the mechanisms influencing the rate of range expansion in invasive small mammals. We described the invasion using a reaction–diffusion model informed by empirical data on life history traits and demographic parameters. We subsequently modelled the processes involved in its range expansion using a rule-based spatially explicit simulation. Habitat suitability interacted with density-dependent parameters to influence dispersal, most notably the density at which local populations started to donate emigrating individuals, the number of dispersing individuals and the direction of dispersal. Whilst local habitat variability influenced the rate of spread, on a larger scale the invasion resembled a simple reaction–diffusion process. Our results suggest a Type 1 range expansion where the rate of expansion is generally constant over time, but with some evidence for a lag period following introduction. We demonstrate that a two-parameter empirical model and a rule-based spatially explicit simulation are sufficient to accurately describe the invasion history of a species that exhibits a complex, density-dependent pattern of dispersal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male-biased sexual size dimorphism is typical of polygynous mammals, where the degree of dimorphism in body mass is related to male intrasexual competition and the degree of polygyny. However, the importance of body mass in monogamous mammals is largely unknown. We investigated the effect of body mass on life-history parameters and territory size in the red fox (Vulpes vulpes), a socially monogamous canid with slight sexual dimorphism. Increased body size in males appeared to confer an advantage in territory acquisition and defense contests because heavier males held larger territories and exerted a greater boundary pressure on smaller neighbors. Heavier male foxes invested more effort in searching for extrapair matings by moving over a wider area and farther from their territories, leading to greater reproductive success. Males that sired cubs outside their own social group appeared to be heavier than males that only sired cubs within their social group or that were cuckolded, but our results should be treated with caution because sample sizes were small. Territory size, boundary pressure, and paternity success were not related to age of males. In comparison, body mass of females was not related to territory size, probability of breeding, litter size, or cub mass. Only age affected probability of breeding in females: younger females reproduced significantly less than did older females, although we did not measure individual nutritional status. Thus, body mass had a significant effect on life-history traits and territory size in a socially monogamous species comparable to that reported in polygynous males, even in the absence of large size dimorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Chemical effects on organisms are typically assessed using individual-level endpoints or sometimes population growth rate (PGR), but such measurements are generally made at low population densities. In contrast most natural populations are subject to density dependence and fluctuate around the environmental carrying capacity as a result of individual competition for resources. As ecotoxicology aims to make reliable population projections of chemical impacts in the field, an understanding of how high-density or resource-limited populations respond to environmental chemicals is essential. 2. Our objective was to determine the joint effects of population density and chemical stress on the life history and PGR of an important ecotoxicological indicator species, Chironomus riparius, under controlled laboratory conditions. Populations were fed the same ration but initiated at different densities and exposed to a solvent control and three concentrations of C-14-cypermethrin in a sediment-water test system for 67 days at 20 +/- 1 degreesC. 3. Density had a negative effect on all the measured life-history traits, and PGR declined with increasing density in the controls. Exposure to C-14-cypermethrin had a direct negative effect on juvenile survival, presumably within the first 24 h because the chemical rapidly dissipated from the water column. Reductions in the initial larval densities resulted in an increase in the available resources for the survivors. Subsequently, exposed populations emerged sooner and started producing offspring earlier than the controls. C-14-cypermethrin had no effect on estimated fecundity and adult body weight but interacted with density to reduce the time to first emergence and first reproduction. As a result, PGR increased with cypermethrin concentration when populations were initiated at high densities. 4. Synthesis and applications. The results showed that the effects of C-14-cypermethrin were buffered at high density, so that the joint effects of density and chemical stress on PGR were less than additive. Low levels of chemical stressors may increase carrying capacity by reducing juvenile competition for resources. More and perhaps fitter adults may be produced, similar to the effects of predators and culling; however, toxicant exposure may result in survivors that are less tolerant to changing conditions. If less than additive effects are typical in the field, standard regulatory tests carried out at low density may overestimate the effects of environmental chemicals. Further studies over a wide range of chemical stressors and organisms with contrasting life histories are needed to make general recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial selection for starvation resistance provided insight into the relationships between evolved physiological and life history trait responses following exposure to biologically induced stress. Investigations of alterations to body composition, metabolic rate, movement, and life history traits including development time, female egg production, and longevity in response to brief periods of starvation were conducted on genetically based starvation-resistant and control lines of Drosophila melanogaster. Analysis of the starvation-resistant lines indicated increased energy storage with increased triglyceride deposition and conversion of carbohydrates to lipid, as identified by respiratory quotient values. Correlations between reductions in metabolic rates and movement in the starvation-resistant lines, suggested the presence of an evolved physiological response resulting in energy conservation. Investigations of life history traits in the starvation-resistant lines indicated no significant differences in development time or reproduction between the selected and control lines. Measurements of longevity, however, indicated a significant reduction in starvation-resistant D. melanogaster lifespan. These results suggested that elevated lipid concentrations, similar to that observed with obesity, were correlated with premature mortality. Exposure of the starvation-resistant and control lines to diets supplemented with glucose, palmitic acid, and a 2:1 mixture of casein to albumin were used to investigate alterations in body composition, movement, and life history traits. Results obtained from this study indicated that increased sugar in the diet led to increased carbohydrate, glycogen, total sugar, trehalose, and triglyceride concentrations, while increased fat and protein in the diet resulted in increased soluble protein, carbohydrate, glycogen, total sugar, and trehalose concentrations. Examination of life history trait responses indicated reduced fecundity in females exposed to increased glucose concentrations. Increased supplementations of palmitic acid was consistently correlated with an overall reduction in lifespan in both the starvation-resistant and control Drosophila lines, while measurements of movement indicated increased female activity levels in flies exposed to diets supplemented with fat and protein. Analyses of the physiological and life history trait responses to starvation and dietary supplementation on Drosophila melanogaster used in the present study has implications for investigating the mechanisms underlying the development and persistence of human obesity and associated metabolic disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early life history traits (ELHTs) are key to understand recruitment patterns in marine animals. However, for reef fishes, studies on ELHTs are mainly focused on tropical systems and little is known for temperate reefs. In this study we used SMURFs (Standard Monitoring Units for the Recruitment of Reef Fishes) to collect fish in a temperate rocky reef system (Arrábida Marine Park, Portugal) on a weekly basis for three months during the recruitment period. Six sub-surface SMURFs sampled 2490 Atlantic horse mackerel (Trachurus trachurus) postlarvae and juveniles. Sagittal and lapilli otoliths were extracted from a subsample of 296 fish and ELHTs, such as size and age at settlement, growth rate and age at first secondary growth formation were examined. Additionally, we tested three growth curves and selected the best suited to back-calculate the hatching pattern based on the lengths of all sampled fish. Standard length ranged from 6.13 mm to 48.56 mm and subsampled fish were aged between 19 days to 44 days. Age and size at settlement were estimated between 19 days and 36 days for individuals of 6.13 mm and 24.95 mm, respectively. Otolith shape changed clearly with increasing age and, on average, secondary growth started to form on day 33 (±3 days). Age/length relationship was well described by a Gompertz growth model which was used to back-calculate hatching dates. Four distinct hatching cohorts were identified with fish of the earliest cohort showing a faster body and otolith growth. This study indicates that the nearshore environment might have an important role in the early growth, development and hence recruitment of Atlantic horse mackerel. Information on the early life history of Atlantic horse mackerel is key to understand recruitment processes for this economically and biologically important species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lusitanian toadfish, Halobatrachus didactylus, like other batrachoidids, is a benthic fish species with nesting behaviour during the breeding season. During this prolonged period it engages in mating activities and remains in the nest providing parental care. It is not known whether males feed while providing parental care but it is likely that their limited mobility may restrict their diet and influence their fitness. As a consequence, egg cannibalism could occur as a life-history strategy. The aim of the present study is to ascertain the feeding behaviour of nesting males, in comparison to mature non-nesting males, and to identify potential life-history traits related to egg cannibalism. Nest-holders were sampled from artificial nests placed in an intertidal area of the Tagus estuary, only exposed during spring low tides. The diet of nest-holders was compared with that of non-nesting mature males from the same area, captured by otter trawl. The present study demonstrates that despite their constrained mobility nest-holders feed during the breeding season, although in a more opportunistic fashion than non-nesting males. Nest-holders showed a generalist feeding behaviour, with a more heterogeneous diet. Egg cannibalism was not related to male condition, paternity or brood size but showed a higher incidence early in the season when water temperatures were lower. The results suggest a possible seasonal trade-off strategy between care and energy recovery, triggered by environmental factors, where under unfavourable conditions to sustain viable eggs the male may recover energy by eating eggs, thus benefiting future reproductive success, later in the season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While much of the study of molecular biology inevitably focuses on the parts of the genome that contain active genes, there are also non-coding regions that nonetheless play an essential role in maintaining genome integrity. One such region are telomeres, which cap the ends of all eukaryotic chromosomes and play an important role in chromosome protection. Telomere loss occurs at each cell division as a result of the ‘end replication problem’ and a relatively short telomere length is indicative of poor biological state. Thus far, the majority of studies on the dynamics and role of telomeres have been biased towards certain taxa. Research to date has mostly focussed on humans, other mammals and birds. There has been far less research on the telomere dynamics of ectotherms. It is important that we do so, especially since ectothermic vertebrates do not seem to down-regulate telomerase expression in the same way as endotherms, suggesting that their telomere dynamics may be less predictable in the later life stages. The main objective of this thesis was therefore to investigate how life history and environmental effects may influence telomere dynamics in Atlantic salmon Salmo salar. I carried out carefully designed experiments, both in the laboratory and in the wild, using a longitudinal approach where possible, in order to address a number of specific questions that are connected to this central theme. In chapter 2, I demonstrate that there can be significant links between parental life history and offspring telomere dynamics. Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stages. Paternal life history traits, such as early life growth rate, had a greater association with offspring telomere dynamics in the later stages of development. In chapter 3, using a wild Atlantic salmon population, I found that most individuals experienced a reduction in telomere length during the migratory phase of their life cycle; however the relative rate of telomere loss was dependent on sex, with males experiencing a relatively greater loss. Unexpectedly, I also found that juvenile salmon that had the shortest telomeres at the time of outward migration, had the greatest probability of surviving through to the return migration. In chapter 4, again using a wild system involving experimental manipulations of juvenile Atlantic salmon in Scottish streams, I found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. Faster-growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. I also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years that fathers had spent at sea. Chapter 5 explored the hypotheses that oxidative DNA damage, catalase (CAT) antioxidant activity and cell proliferation rate are underlying mechanisms linking incubation temperature and telomere dynamics in salmon embryos. No evidence was found for any such effects, but telomere lengths in salmon embryos were found to be significantly affected by the temperature of the water in which they were living. There is also evidence that telomere length significantly increases during embryonic development. In summary, this thesis has shown that a complex mix of environmental and parental effects appear to influence telomere dynamics in Atlantic salmon, with parental effects especially evident during early life stages. It also demonstrated that telomeres lengthen through the embryo stages of development before reducing once the fry begin feeding, indicating that the patterns of telomere loss commonly found in endotherms may differ in ectotherms. Reasons for this variation in telomere dynamics are presented in the final Discussion chapter of the thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human-assisted, trans-generational exposure to ocean warming and acidification has been proposed as a conservation and/or restoration tool to produce resilient offspring. To improve our understanding of the need for and the efficacy of this approach, we characterised life history and physiological responses in offspring of the marine polychaete Ophryotrocha labronica exposed to predicted ocean warming (OW: + 3 °C), ocean acidification (OA: pH -0.5) and their combination (OWA: + 3 °C, pH -0.5), following the exposure of their parents to either control conditions (within-generational exposure) or the same conditions (trans-generational exposure). Trans-generational exposure to OW fully alleviated the negative effects of within-generational exposure to OW on fecundity and egg volume and was accompanied by increased metabolic activity. While within-generational exposure to OA reduced juvenile growth rates and egg volume, trans-generational exposure alleviated the former but could not restore the latter. Surprisingly, exposure to OWA had no negative impacts within- or trans-generationally. Our results highlight the potential for trans-generational laboratory experiments in producing offspring that are resilient to OW and OA. However, trans-generational exposure does not always appear to improve traits, and therefore may not be a universally useful tool for all species in the face of global change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrating connectivity patterns into marine ecosystem management is a fundamental step, specially for stock subjected to the combined impacts of human activities (overfishing, habitat degradation, etc.) and climate changes. Thus, management of marine resources must incorporates the spatial scales over which the populations are connected. Notwithstanding, studying these dynamics remains a crucial and hard task and the predictions of the temporal and spatial patterns of these mechanisms are still particularly challenging. This thesis aims to puzzle over the red mullet Mullus barbatus population connectivity in the Western Mediterranean Sea, by implementing a multidisciplinary approach. Otolith sclerochronology, larval dispersal modelling and genetic techniques were gathered in this study. More particularly, this research project focused on early life history stages of red mullet and their role in the characterization of connectivity dynamics. The results show that M. barbatus larval dispersal distances can reach a range of 200 km. The differences in early life traits (i.e. PLD, spawning and settlement dates) observed between various areas of the Western Mediterranean Sea suggest a certain level of larval patchiness, likely due to the occurrence of different spawning pulses during the reproductive period. The dispersal of individuals across distant areas, even not significant in demographic terms, is accountable for the maintenance of the genetic flow among different demes. Fluctuations in the level of exchange among different areas, due to the variability of the source-sink dynamics, could have major implications in the population connectivity patterns. These findings highlight the reliability of combining several approaches and represent a benchmark for the definition of a proper resource management, with considerable engagements in effectively assuring the beneficial effects of the existent and future conservation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several insect species show an increase in cuticular melanism in response to high densities. In some species, there is evidence that this melanism is correlated with an up-regulation of certain immune system components, particularly phenoloxidase (PO) activity, and with the down-regulation of lysozyme activity, suggesting a trade-off between the two traits. As melanism has a genetic component, we selected both melanic and nonmelanic lines of the phase-polyphenic lepidopteran, Spodoptera littoralis, in order to test for a causative genetic link between melanism, PO activity and lysozyme activity, and to establish if there are any life-history costs associated with the melanic response. We found that, in fact, melanic lines had lower PO activity and higher lysozyme activity than nonmelanic lines, confirming a genetic trade-off between the two immune responses, but also indicating a genetic trade-off between melanism and PO activity. In addition, we found that lines with high PO activity had slower development rates suggesting that investment in PO, rather than in melanism, is costly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.