990 resultados para latex product waste
Resumo:
Prawn shell waste collected from shrimp-processing plants in Cochin, India, was subjected to fermentation using 20 chitinoclastic and proteolytic/non-proteolytic bacterial strains. The products generated were analysed for protein, lipid, total sugars, N-acetyl glucosamine, free amino acids and ash. Shrimp diets were prepared using these 20 fermented products and a control diet using raw prawn shell waste. Feeding experiment was conducted with postlarvae (PL21) of Indian white prawn, Fenneropenaeus indicus for a period of 21 days. Biogrowth parameters such as mean weight gain, feed conversion ratio, specific growth rate and protein efficiency ratio were estimated and the animals were challenged with white spot virus orally via diet. Enhanced growth could be observed in prawns fed F134 and F124, incorporated with the fermentation products generated using Bacillus spp., C134 and C124 respectively. The percentage survival of prawns after 7 days of challenge was found to be highest for groups fed diet F111 incorporated with fermentation product generated using Bacillus sp. These products of bacterial fermentation hold promise as growth enhancers and immunostimulants in aquaculture. KEY WORDS: biogrowth parameters, feed
Resumo:
Marine yeasts (33 strains) were isolated from the coastal and offshore waters off Cochin. The isolates were identified and then characterized for the utilization of starch, gelatin, lipid, cellulose, urea, pectin, lignin, chitin and prawn-shell waste. Most of the isolates were Candida species. Based on the biochemical characterization, four potential strains were selected and their optimum pH and NaCI concentration for growth were determined. These strains were then inoculated into prawn-shell waste and SCP (single cell protein) generation was noted in terms of the increase in protein content of the final product.
Resumo:
The essence of lean is very simple, but from a research and implementation point of view overwhelming. Lean is the search for perfection through the elimination of waste and the insertion of practices that contribute to reduction in cost and schedule while improving performance of products. This concept of lean has wide applicability to a large range of processes, people and organizations, from concept design to the factory floor, from the laborer to the upper management, from the customer to the developer. Progress has been made in implementing and raising the awareness of lean practices at the factory floor. However, the level of implementation and education in other areas, like product development, is very low.
Resumo:
“What is value in product development?” is the key question of this paper. The answer is critical to the creation of lean in product development. By knowing how much value is added by product development (PD) activities, decisions can be more rationally made about how to allocate resources, such as time and money. In order to apply the principles of Lean Thinking and remove waste from the product development system, value must be precisely defined. Unfortunately, value is a complex entity that is composed of many dimensions and has thus far eluded definition on a local level. For this reason, research has been initiated on “Measuring Value in Product Development.” This paper serves as an introduction to this research. It presents the current understanding of value in PD, the critical questions involved, and a specific research design to guide the development of a methodology for measuring value. Work in PD value currently focuses on either high-level perspectives on value, or detailed looks at the attributes that value might have locally in the PD process. Models that attempt to capture value in PD are reviewed. These methods, however, do not capture the depth necessary to allow for application. A methodology is needed to evaluate activities on a local level to determine the amount of value they add and their sensitivity with respect to performance, cost, time, and risk. Two conceptual tools are proposed. The first is a conceptual framework for value creation in PD, referred to here as the Value Creation Model. The second tool is the Value-Activity Map, which shows the relationships between specific activities and value attributes. These maps will allow a better understanding of the development of value in PD, will facilitate comparison of value development between separate projects, and will provide the information necessary to adapt process analysis tools (such as DSM) to consider value. The key questions that this research entails are: · What are the primary attributes of lifecycle value within PD? · How can one model the creation of value in a specific PD process? · Can a useful methodology be developed to quantify value in PD processes? · What are the tools necessary for application? · What PD metrics will be integrated with the necessary tools? The research milestones are: · Collection of value attributes and activities (September, 200) · Development of methodology of value-activity association (October, 2000) · Testing and refinement of the methodology (January, 2001) · Tool Development (March, 2001) · Present findings at July INCOSE conference (April, 2001) · Deliver thesis that captures a formalized methodology for defining value in PD (including LEM data sheets) (June, 2001) The research design aims for the development of two primary deliverables: a methodology to guide the incorporation of value, and a product development tool that will allow direct application.
Resumo:
Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.
Resumo:
The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed
Resumo:
Hot rolling process is heat input process. The heat energy in hot rolled steel coils can be utilized. At SSAB Strip Product Borlänge when the hot rolled steel coils came out of the hot rolling mill they are at the temperature range of 500°C to 800°C. Heat energy contained by the one hot rolled steel coil is about 1981Kwh whereas the total heat energy for the year 2008 is 230 GWh/year.The potential of heat is too much but the heat dissipation rate is too slow. Different factors on which heat dissipation rate depends are discussed.Three suggestions are proposed to collect the waste heat from hot rolled steel coils.The 2nd proposal in which water basin is suggested would help not only to collect the waste heat but to decrease in the cooling time.
Resumo:
Banana is an agricultural product of great economic importance for various developing countries. The relationship between moisture content and water activity provides useful information for the processing and storage of banana waste. The water activity and moisture content of three banana (Mussa spp. Haploid AAB cv. Nanica) waste items were analyzed to determine the desorption isotherms at six different temperatures (20, 30, 40, 50, 60 and 70°C). The desorption isotherms of the peel, pedicel and pulp of overripe bananas were determined in wide ranges of moisture content (0.001-6.360 kg kg-1 d.b.) and water activity (0.02-0.907). The theoretical GAB model was used for modelling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy and Gibbs' free energy by way of the GAB model when the effect of temperature on the hygroscopic equilibrium was considered. © 2012 de Gruyter. All rights reserved.
Resumo:
Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L-1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application. © 2013 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
Ultramarine pigments were successful synthesized from zeolite A obtained from kaolin waste. This waste has been used as an excellent source of silicon and aluminum for zeolite synthesis because of its high kaolinite concentrations and low contents of other accessory minerals. The cost is naturally less than the industrialized product. Color additives (Sulfur and Sodium Carbonate) were mixed with different proportions of zeolite A and further calcined for 5 h at 500 °C. They were characterized by XRD and XRF in addition to visual classification by color and shade. These products show colors from blue to green at different shades, both influenced by the amount of additives and cooling rate after calcination. Thus, a different quantity of the same additives in the same zeolitic matrix provides an increase in the color intensity. Cooling rate after calcination induces the color change which is substantially important in the pigments production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Techniques of production of enthomopatogenic bacteria are developed aiming to increase the productivity and to reduce the costs of the fermentative process. Like this, it has been using agroindustrial wastes or by-products as nutrient sources in culture medium, having been used, in this study, the manipueira, a by-product of the processing of the cassava flour. Fermentations were performed in flasks of Erlenmeyer of 500 mL containing 250 mL of culture media, conditioned in shaker at 180 r.p.m. and 28°C, and the media were composed by manipueira, in concentrations that varied between 400 and 1000 mL/L. The time of the process varied between 48 and 120 hours. They appraised the following parameters: cellular growth, the production of spores, the reduction of organic matter (COD analysis) and the variation of reduction sugar. Although there was a proportional cellular growth to the manipueira concentration, the production of spores was similar in all the cases, at the end of the process, in spite of the smallest speed of production of the same ones in the highest concentrations. In relation to the variation of COD, it has, also, a percentile minor of reduction in the highest concentrations. In the analysis of variation of reduction sugars, the higher concentrations are the ones that they present larger slowness in the reduction of this.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)