983 resultados para large scattering length
Resumo:
In this paper we consider the case of a Bose gas in low dimension in order to illustrate the applicability of a method that allows us to construct analytical relations, valid for a broad range of coupling parameters, for a function which asymptotic expansions are known. The method is well suitable to investigate the problem of stability of a collection of Bose particles trapped in one- dimensional configuration for the case where the scattering length presents a negative value. The eigenvalues for this interacting quantum one-dimensional many particle system become negative when the interactions overcome the trapping energy and, in this case, the system becomes unstable. Here we calculate the critical coupling parameter and apply for the case of Lithium atoms obtaining the critical number of particles for the limit of stability.
Resumo:
The topography of fracture surface along stretch zone front for Al7050 is analyzed about its fractal behavior and compared against local distributions of microstructural parameters and stretch zone height, considered here as a toughness parameter. Major influence on microscale was presented by precipitation density. Larger grains should be significant on topographic behavior at macroscale, besides the local toughness measured along stretch zone. The large scattering of fractal measurements along specimen width should limit the validity of models relating fractal values and fracture toughness. It is proposed that models based on mixed fractals must also consider some dispersion parameter instead of mean fractal measurements due to the overall complexity of fracture relief formation. It is suggested that sampling for fractal measurement must be restricted to plane strain region along fracture surface, due to smaller scattering in this region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate in an axially symmetric harmonic trap alone during resonant collective oscillations via a classical dynamical transition. The forced resonant oscillation can be initiated by (a) periodic modulation of the atomic scattering length with a frequency that equals twice the radial trapping frequency or multiples thereof, or by (b) periodic modulation of the radial trapping potential with a frequency that equals the radial trapping frequency or multiples thereof. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Based on the time-dependent Gross-Pitaevskii equation we study the evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries to see the effect of confinement on collapse and subsequent explosion, which can be verified in future experiments. We make a prediction for the evolution of the shape of the condensate and the number of atoms in it for different trap symmetries (cigar to pancake) as well as in the presence of an optical lattice potential. We also make a prediction for the jet formation in different cases when the collapse is suddenly terminated by changing the scattering length to zero via a Feshbach resonance. In addition to the usual global collapse to the center of the condensate, in the presence of an optical-lattice potential one could also have in certain cases independent collapse of parts of the condensate to local centers, which could be verified in experiments.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.
Resumo:
We predict the loss of superfluidity in a Bose-Einstein condensate (BEC) trapped in a combined optical and axially-symmetric harmonic potentials during a resonant collective excitation initiated by a periodic modulation of the atomic scattering length a, when the modulation frequency equals twice the radial trapping frequency or multiples thereof. This classical dynamical transition is marked by a loss of superfluidity in the BEC and a subsequent destruction of the interference pattern upon free expansion. Suggestion for future experiment is made. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider the ground-state properties of mixed Bose-Einstein condensates of Rb-87 and Rb-85 atoms in the isotropic pancake trap for both signs of the interspecies scattering length. In the case of the repulsive interspecies interaction, there are the axially symmetric and symmetry-breaking ground states. The threshold for the symmetry-breaking transition, which is related to appearance of a zero dipole mode, is found numerically. For attractive interspecies interactions, the two condensates assume symmetric ground states for the numbers of atoms up to the collapse instability of the mixture.
Resumo:
We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii (GP) equation with both spherical and axial symmetries. We consider time-evolution problems initiated by suddenly changing the interatomic scattering length or harmonic trapping potential in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent GP equation, where all nonlinear and linear non-derivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two successive tetramer states, is revealed by considering a renormalized zero-range two-body interaction in bound state of four identical bosons. The tetramer energy spectrum is obtained by adding a boson to an Efimov bound state with energy B-3 in the unitary limit (for zero two-body binding energy or infinite two-body scattering length). Each excited N-th tetramer energy B-4((N)) is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio B-4((N))/B-3 = 4.6, which does not depend on N. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.