99 resultados para lämpötila
Resumo:
Tämän diplomityön tavoitteena oli pienentää TCF-valkaisimon laatuvaihtelua ja vähentää kemikaaleista aiheutuvia kustannuksia. Työn kirjallisuusosassa tarkasteltiin valkaisuun vaikuttavia tekijöitä. Valkaisukemikaaleista olivat mukana TCF-valkaisussa käytettävät otsoni ja vetyperoksidi. Lisäksi selvitettiin metallien poistoa massasta sekä vesikierron sulkemisesta aiheutuvia ongelmia. Kokeellisessa osassa etsittiin Oy Metsä-Botnia Ab Rauman tehtaan valkaisuprosessin suurimmat laatuominaisuuksien vaihteluun vaikuttavat tekijät. Tavoitteena oli pienentää vaihtelua valmiin massan laatuominaisuuksissa sekä vähentää raaka-aineista ja kemikaaleista aiheutuvia kustannuksia laatuominaisuuksien tasoa laskematta. Tutkimuksessa käytettiin hyväksi Taguchi-menetelmää sekä monimuuttuja-analyysiä. Tutkimuksessa tehtiin kaksi Taguchi-koetta, joissa tutkittiin valkaisimon ensimmäistä otsonivaihetta sekä koko valkaisimoa. Otsonivaiheen merkittävimmiksi tekijöiksi osoittautuivat otsoniannos, otsonin väkevyys sekä pH. Kaikkia valkaisimon vaiheita tutkittaessa löydettiin merkittävimmiksi tekijöiksi ensimmäisen peroksidivaiheen lämpötila, vetyperoksidin jakaminen peroksidivaiheisiin, kelatointi sekä otsonivaiheen otsoniannos ja pH. Optimiajomallin avulla saatiin valkaisimon laatuvaihtelua pienennettyä. Kemikaalikustannuksiin vaikuttavista tekijöistä merkittävimmiksi osoittautuivat kelatoinnin vaikutus, vetyperoksidin annosteleminen molempiin vaiheisiin sekä ensimmäisen peroksidivaiheen lämpötila. Optimiajomallien avulla vetyperoksidikulutusta saatiin pienennettyä noin 24 %.
Resumo:
Tämän työn tavoitteena oli reaktiokalorimetrin käyttöönotto sekä sen käyttökelpoisuuden selvittäminen hydrometallurgisten sovellusten ja erityisesti sinkkisulfidin liuotuksen tutkimiseen. Työn kirjallisuusosassa on käsitelty yleisellä tasolla kalorimetrian ja reaktiokalorimetrian teoriaa, termodynamiikkaa sekä sinkkirikasteen liuotuksen kemiaa. Lisäksi työssä esitellään erilaisten kalorimetrien ja termoanalyyttisten mittauslaitteiden toimintaperiaatteita. Työn kokeellisessa osassa selvitettiin reaktiokalorimetrin mittaustulosten tarkkuutta vesi- kokeiden avulla. Laitteistolla määritettiin myös reaktiolämmöt sinkkisulfidin liukenemisreaktiolle sekä elohopeasuolan saostusreaktiolle. Lisäksi tutkittiin sekoitusnopeuden, lämpötilan ja kiintoainepitoisuuden vaikutusta mittaustuloksiin. Reaktiokalorimetrillä suoritettujen kokeiden perusteella havaittiin, että reaktiolämpöjen absoluuttisten arvojen määrittäminen laitteistolla on käytännössä vaikeaa. Koska reaktiokalorimetrillä pystytään määrittämään vain mittauksen aikana tapahtunut kokonaislämpömuutos, vaikuttavat mahdolliset faasimuutokset ja reaktorin lämpöhäviöt mittaustuloksiin. Näiden tekijöiden vaikutus on pyrittävä eliminoimaan tai niiden vaikutus on tunnettava tarkkaan, jos laitteella halutaan saada luotettavia reaktiolämpömittaustuloksia. Laitteiston mittaustarkkuus huononee huomattavasti, kun reaktorin lämpötila nousee yli 60 °C:een. Laitteistolla mitatut reaktiolämmöt poikkeavat huomattavasti vastaavista kirjallisuuden arvoista. Vedelle määritetyt ominaislämpökapasiteetit poikkeavat kirjallisuuden arvoista enintään 5 alle 90 °C:een lämpötilassa.
Resumo:
Työn tavoitteena oli tutkia kiertoveden puhdistamiseen käytetyn kalvosuodatuksen esikäsittelymenetelmien vaikutusta ultrasuodatukseen. Suodatettava vesi oli kierrätyskuitua käyttävän paperikoneen kiekkosuotimen kirkassuodosta. Koeajon loppuosassa käytettiin biokirkassuodosta. Paperitehtaassa oli suljettu vesikierto. Pilot-laitteistona käytettiin Metso PaperChemin OptiFilter CR550/40 ultrasuodatusyksikköä. Testatut kalvot olivat C30 kalvoja. Suodatuksissa seurattiin esikäsittelymenetelmien vaikutusta permeaatin määrään ja laatuun. Ultrasuodatus tehtiin sekä ilman esikäsittelyä että lamelliselkeytin esikäsittelynä. Esikäsittelykemikaalina käytettiin talkkia. Ultrasuodatuksissa havaittiin, että suodatuslämpötilalla oli suora vaikutus kapasiteettiin. Lämpötila vaikutti lineaarisesti kirkassuodoksen ja biokirkassuodoksen permeaattivuohon. Lämpötila nostettiin 55oC:een suodatuslämpötilasta 35 – 40oC. Korkeassa lämpötilassa kirkassuodos oli kapasiteetiltaan suurempi kuin biokirkassuodos. Konsentrointiajoista nähtiin, että ultrasuodatuksen syötön konsentraatioaste vaikutti kirkassuodoksen permeaattivuohon. Syötön konsentraatioastetta lisättäessä kapasiteetti laski. Konsentrointiajoja vertailtaessa havaitaan, että ilman esikäsittelyä vuo laski konsentroitaessa nopeammin kuin suodatuksissa, joissa käytettiin esikäsittelyä. Lamelliselkeyttimellä ja talkilla esikäsitelty suodatus laski kapasiteettia vähiten. Konsentraatioasteen nostaminen lisäsi konsentraatin kemiallista hapenkulutusta. Konsentraatin viskositeetti nousi konsentraatioastetta lisättäessä. Analyysitulosten perusteella saadaan ultrasuodatuskalvoille tyypilliset reduktiot. COD-reduktio oli 10 – 30 %, anionisuuden 40 – 70 % ja värin 80 – 90 %. Vuon kanssa korreloivat pH, uuteaine, ligniini, viskositeetti ja hemiselluloosat.
Resumo:
Diplomityössä päivitetään voimalaitoksen ympäristöntarkkailusuunnitelma vastaamaan uudistuneen ympäristöluvan ja lainsäädännön edellytyksiä. Työssä tutkitaan leijupetikatti-loiden tulipesän lämpötiloja, savukaasun viipymäaikoja tulipesässä, leijukerroskattiloiden päästöjä, päästöjen jatkuvatoimista mittaamista sekä päästöjen seurantaa ja raportointia. Tulipesän lämpötiloja mitattiin kupla- ja kiertoleijukattiloilla. Tuloksien perusteella havait-tiin kiertoleijukattilan tulipesän alaosan lämpötilojen olevan lähes riippumaton pedin lämpötilasta ja höyrykuormasta. Tulipesän yläosassa lämpötilat nousevat höyrykuorman kasvaessa, mutta pedin lämpötilalla ei havaittu vaikutusta tulipesän yläosassakaan. Molemmilla kattiloilla havaittiin voimakas vaakatasoinen lämpötilaprofiili. Kuplaleijukattilalla sekä höyrykuorma että pedin lämpötila vaikuttivat tulipesän lämpötilaan. Savukaasun teoreettiset viipymäajat laskettiin kiertoleijukattilalle. Laskelmien ja mittauksien perusteella havaittiin kattilalla mahdollisuus saavuttaa savukaasun kahden sekunnin viipymäaika 850 ºC lämpötilassa. Kattilan käyttäytymisen aukottomaksi selvittämiseksi kaikilla polttoaineseoksilla ja höyrykuormilla tarvitaan lisää toimenpiteitä kattilalla ja lisää tulipesän lämpötilamittauksia. Leijukerroskattiloiden päästöjen syntymistä ja hallintaa tutkittiin teoreettisesti kirjallisuustutkimuksena. Tutkittuihin päästöihin kuuluivat typen oksidit, rikkidioksidi, hiukkaset, hiilimonoksidi, orgaaninen kokonaishiili, suolahappo, fluorivety, raskasmetallit sekä dioksiinit ja furaanit. Jatkuvatoimisten päästömittausmittauslaitteiden toimintaperiaatteita selvitettiin kirjalli-suustutkimuksena. Samoin selvitettiin jatkuvatoimisten päästömittauslaitteiden virhelähtei-tä. Päästömittauslaitteille laadittiin pitkän ja lyhyen ajan laadunvarmistussuunnitelma. Ha-vaittiin, että nykyiset jatkuvatoimiset päästömittauslaitteet eivät täytä kaikkia uusia laatu-kriteereitä. Päästöjen jatkuvatoimiseen seuraamiseen työssä suunniteltiin uusi valvomonäyttö. Uuden näytön avulla tehostetaan päästöjen valvontaa. Päästöjen raportointiin työssä suunniteltiin vuorokausiraportti. Raporttiin kerätään jatkuva-toimisten päästömittauslaitteiden puolen tunnin keskiarvot. Raportin tarkastaa, allekirjoittaa ja arkistoi vuorossa oleva operaattori.
Resumo:
Tämän työn tarkoituksena oli tutkia lämpötilan pH:n ja vetyperoksidin vaikutusta kuorimoveden haihdutuskonsentraatin märkähapetuksessa. Kirjallisuusosassa esitellään massan ja paperin valmistusta sekä kuorintaprosessi. Lisäksi tarkastellaan kuoren kemiallista koostumusta, jäteveden ja prosessiveden käsittelymenetelmiä sekä märkähapetuksen periaatteita. Kokeellinen osa käsittää erään suomalaisen paperitehtaan kuorimoveden haihdutuskonsentraatin märkähapetuskokeet. Hapetuskokeet tehtiin useammassa eri lämpötilassa, pH:ssa ja vetyperoksidikonsentraatiossa. Em. muuttujien vaikutusta tutkittiin kemialliseen hapenkulutukseen (COD), biologiseen hapenkulutukseen (BOD), välittömästi saatavana olevan biologiseen hapenkulutukseen (IABOD), orgaaniseen kokonaishiileen (TOC) ja tanniini/ligniini pitoisuuteen. Koetulokset osoittivat, että korkeimmat COD- ja TOC-reduktiot saavutettiin H2O2-katalysoidulla märkähapetuksella jäteveden alkuperäisessä pH:ssa (60 % reduktio COD:lla ja 45 % reduktio TOC:lla lämpötilassa 170 °C ja 0.2 g H2O2/g COD). Toisaalta, parhaat tulokset biohajoavuuden paranemisen suhteen saavutettiin emäksisissä olosuhteissa, jossa 170 °C:ssa saavutettiin BOD/COD-arvo 76 %. Emäksisissä olosuhteissa saavutettiin lähes täydellinen tanniinin reduktio lämpötila-alueella 130-170 °C, mutta näissä lämpötiloissa orgaanisen kuorman alenemista ei havaittu.
Resumo:
High barrier materiaaleilla pyritään pidentämään pakattujen elintarvikkeiden hyllyikää. Barrierin tärkein tehtävä on elintarvikkeen suojaaminen hapelta ja kosteudelta. Alumiinin käyttöä barriermateriaalina pyritään vähentämään korvaamalla alumiini polymeereillä, jotka täyttävät elintarvikkeiden asettamat korkeat säilyvyysvaatimukset. Etyylivinyylialkoholin (EVOH) hapenläpäisevyys on kuivissa olosuhteissa alhaisin kaupallisista muovilaaduista. EVOH tarjoaa myös erinomaisen suojan muita kaasuja, rasvoja, hajuja ja aromeja vastaan ja sitä on helppo prosessoida. Polyamideilla on erinomainen kaasutiiveys sekä hyvä lujuus ja sitkeys. Eri muovilaatuja sekoittamalla voidaan vähentää hapenläpäisyä ja parantaa prosessointia. Polyolefiineja käytetään yleisesti päällystysmateriaaleina, koska ne suojaavat tuotetta erinomaisesti kosteudelta. Hapenläpäisyllä tarkoitetaan hapen kulkeutumista materiaalin läpi joko permeaation kautta tai reikien ja vuotojen läpi. Kaasun permeoitumiseen materiaalin läpi vaikuttavat materiaalin vapaa tilavuus, kiteisyysaste, orientaatio, substituointi, suhteellinen kosteus, lämpötila, barrierkerroksen paksuus, paine-ero ja permeoituvan molekyylin ominaisuudet. Kokeellisessa osassa analysoitiin ja vertailtiin kartonkipohjaisia mehutölkkejä, joissa käytettävät high barrier materiaalit olivat EVOH ja PA. Kartonkipohjaisia alumiinitölkkejä käytettiin referenssinä. Pakkausten hapenläpäisevyysmittauksissa saatiin samasta näytteestä toistettavia tuloksia, vaikka vuotomittauksissa saadut tulokset eivät olleet vertailukelpoisia hapenläpäisytulosten kanssa. Tölkkien valmistus vaikutti oleellisesti pakkausten tiiveysominaisuuksiin. Hapenläpäisy vuotojen ja reikien läpi oli merkittävämpää kuin hapenläpäisy materiaalin läpi. Pakkausten tiiveysominaisuuksia analysoitiin mittaamalla appelsiinimehun askorbiini-happopitoisuus. Askorbiinihapon hajoaminen mitattiin koetölkkeihin pakatusta appelsiinimehusta, ja lämpötilan, valon ja hapen vaikutusta askorbiinihapon hajoamiseen tutkittiin 12 viikon ajan. Lämpötilalla oli suurin vaikutus askorbiinihapon hajoamiseen huolimatta käytetystä pakkausmateriaalista.
Resumo:
Diplomityössä kerrotaan sähkökoneiden on-line kunnonvalvontaan käytettävistä mittauksista ja analyyseistä sekä antureista, joilla näitä mittauksia voidaan suorittaa. Työssä pohditaan anturielektroniikan suunnittelua ja rakentamista vaativiin ympäristöolosuhteisiin, joita ovat muun muassa korkea lämpötila, kosteus, paine ja voimakkaat magneettikentät. Testataan analogisen lämpötila-anturin toimivuutta taajuusmuuttajakäytön läheisyydessä. Häiriöpiikkien suodattamista varten tehdään mediaanisuodatusohjelma. Lisäksi työssä suunnitellaan kunnonvalvontapilotit pumppuun sellutehtaalle sekä generaattorikäyttöön vesivoimalaan. Pilotit muodostuvat anturoinnista, anturitason tiedonsiirrosta ja mittaustiedon keruusta. Järjestelmää testataan lievästi sisäkehävaurioisella laakerilla. Työssä kerrotaan myös kunnonvalvontajärjestelmän pilotoinnista sellutehtaalle ja analysoidaan sieltä saatuja tuloksia.
Resumo:
Huonetilojen lämpöolosuhteiden hallinta on tärkeä osa talotekniikan suunnittelua. Tavallisesti huonetilan lämpöolosuhteita mallinnetaan menetelmillä, joissa lämpödynamiikkaa lasketaan huoneilmassa yhdessä laskentapisteessä ja rakenteissa seinäkohtaisesti. Tarkastelun kohteena on yleensä vain huoneilman lämpötila. Tämän diplomityön tavoitteena oli kehittää huoneilman lämpöolosuhteiden simulointimalli, jossa rakenteiden lämpödynamiikka lasketaan epästationaarisesti energia-analyysilaskennalla ja huoneilman virtauskenttä mallinnetaan valittuna ajanhetkenä stationaarisesti virtauslaskennalla. Tällöin virtauskentälle saadaan jakaumat suunnittelun kannalta olennaisista suureista, joita tyypillisesti ovat esimerkiksi ilman lämpötila ja nopeus. Simulointimallin laskentatuloksia verrattiin testihuonetiloissa tehtyihin mittauksiin. Tulokset osoittautuivat riittävän tarkoiksi talotekniikan suunnitteluun. Mallilla simuloitiin kaksi huonetilaa, joissa tarvittiin tavallista tarkempaa mallinnusta. Vertailulaskelmia tehtiin eri turbulenssimalleilla, diskretointitarkkuuksilla ja hilatiheyksillä. Simulointitulosten havainnollistamiseksi suunniteltiin asiakastuloste, jossa on esitetty suunnittelun kannalta olennaiset asiat. Simulointimallilla saatiin lisätietoa varsinkin lämpötilakerrostumista, joita tyypillisesti on arvioitu kokemukseen perustuen. Simulointimallin kehityksen taustana käsiteltiin rakennusten sisäilmastoa, lämpöolosuhteita ja laskentamenetelmiä sekä mallinnukseen soveltuvia kaupallisia ohjelmia. Simulointimallilla saadaan entistä tarkempaa ja yksityiskohtaisempaa tietoa lämpöolosuhteiden hallinnan suunnitteluun. Mallin käytön ongelmia ovat vielä virtauslaskennan suuri laskenta-aika, turbulenssin mallinnus, tuloilmalaitteiden reunaehtojen tarkka määritys ja laskennan konvergointi. Kehitetty simulointimalli tarjoaa hyvän perustan virtauslaskenta- ja energia-analyysiohjelmien kehittämiseksi ja yhdistämiseksi käyttäjäystävälliseksi talotekniikan suunnittelutyökaluksi.
Resumo:
Numeerisella mallinnuksella on tavoitteena täydentää ja korvata kokeellista tutkimusta. Tässä tutkimuksessa on mallinnettu CFX 4.1- ja CFX 4.2-ohjelmien avulla lämmönsiirtoa putken sisäpinnalla. Virtausaineena putkessa on käytetty vettä ja vesi-monopropyleeniglykoliliuosta. Tarkasteltujen virtaustapausten Reynoldsin luku vaihtelee 200 - 30000. Kun glykolipitoisuus on suuri ja liuoksen lämpötila on pieni virtaus on laminaarista ja tällöin lämmönsiirtymiskerroin on pieni. Lämmönsiirron tehostamiseksi putkeen on asennettu turbulaattorilanka. Työssä on selvitetty edellytyksiä mallintaa hydraulisesti sileässä putkessa tapahtuvaa virtausta. Reynoldsin luvun ollessa alle 2300 mallinnuksessa on käytetty laminaarimallia. Reynoldsin luvuilla 2300-30000, turbulenttisella alueella, on käytetty pienten Reynoldsin luvun k-ɛ-mallia. Malli vaatii toimiakseen tiheän laskentaverkon putken seinämän läheisyydessä. Tarkastellulla alueella virtauksen ja lämmönsiirron mallinnuksen tulokset ovat vastaavat kuin teorian perusteella lasketut ja kokeellisista mittauksista saatavat tulokset. Lämmönsiirron tehostamiseksi putkeen on asennettu turbulaattorilanka. Tässä työssä on numeerisin menetelmin (pienten Reynoldsin luvun k-ɛ-malli ja k-ɛ-malli) suoritettu laskentaa yhdellä turbulaattorilankarakenteella. Laskennan vertailuaineistona on käytetty aikaisemmasta kokeellisesta tutkimuksesta saatua mittausdataa. Kokeellisessa tutkimuksessa turbulaattorirakenteena on käytetty putken seinämällä kiertyvää turbulaattorilankaa. Todellinen kolmiulotteinen geometria osoittautui vaikeaksi mallintaa. Toimivaa mallia ei ollut mahdollista toteuttaa aikataulun puitteissa ja mallin laskentakapasiteetin tarve kasvoi liian suureksi. Lankarakenne yksinkertaistettiin tasavälein toistuvaksi riparakenteeksi, joka on helpompi mallintaa aksisymmetriaa käyttäen kaksiulotteisena. Mallin tuloksista painehäviö asettuu kirjallisuudesta saatavan vertailuaineiston kanssa samalle tasolle, mutta lämmönsiirtymiskerroin on vertailuaineistoa huomattavasti suurempi.
Resumo:
Tämä opinnäytetyö tehtiin Borealis Polymers Oy:n Porvoon tuotantolaitokselle. Työn ta-voitteena oli kehittää Borealiksen fenolin tuotantoprosessiin kiertoasetonin aldehydien poisto ratkaisu siltä varalta, että uuden hajotusteknologian käyttöön oton jälkeen ensisijai-nen aldehydien poistoratkaisu osoittautuisi riittämättömäksi ja asetonituotteessa ilmenisi spesifikaatio-ongelmia. Tutkimuksen kokeellinen osuus suoritettiin pienellä paineen kestävällä reaktorilla, jossa eri parametreja olivat: paine, lämpötila, reagenssit ja konsentraatiot ja reaktioaika. Tavoittee-na oli käyttää saatuja tutkimustuloksia asetonituotteen pitämisessä spesifikaatioiden mu-kaisena erityisesti aldehydien suhteen. Tutkimuksen suurimpina ongelmina olivat tuotantoprosessin monimutkaisuus, näytemat-riisin kompleksisuus, tuotehävikki, uusien epäpuhtauksien syntyminen ja poistettujen epä-puhtauksien stabiilisuus. Matriisin kompleksisuus ja reaktioista johtuvat koostumuksen vaihtelut vaikeuttivat analyysejä ja matriisin emäksisyys aiheutti analyysilaitteiston huolto-välin kaventumista. Näytteiden analysointi tapahtui Hewlett Packard 5890-kaasukromatografilla käyttäen FID-detektoria ja J&W Scientific/Agilent DB Wax-kapillaarikolonnia. Tutkimuksen tavoitteet saavutettiin ja tislauskolonnista valmistetun reaktorin osoitettiin olevan toimiva ratkaisu aldehydien poistamiseksi uudessa fenolin tuotantoprosessissa. Samalla tuoteasetonin laatua parannettiin ja aldehydipuhdistuksen turvamarginaalia kas-vatettiin. Tutkimustulosten perusteella tehtiin reaktorinkäytöstä vastaavalle operaattorille käyttöohje.
Resumo:
Diplomityö tehtiin osana Vapon toteuttamaa monivuotista pelletin kehitysohjelmaa. Kehitysohjelma koostuu useista pienemmistä osaprojekteista, jotka täydentävät toinen toisiaan. Pellettien raaka-ainepohjan laajentaminen on eräs näistä osaprojekteista. Tutkimustyön tavoitteena oli selvittää erilaisten potentiaalisten bioraaka-aineiden soveltuvuutta pelletointiin joko sellaisenaan tai erilaisina seoksina. Raaka-aineiden pelletoitavuutta tutkittiin kenttäolosuhteissa mobiilipelletointilaitoksella. Laitoksen pääkomponentit muodostivat Kahl C 38–780 tasomatriisipuristin, jäähdytin ja täryseula. Pelletointikokeissa tutkittuja raaka-aineita olivat mäntysahanpuru, männynkuori, harvennusranka, haapa, koivu, jyrsinturve ja ruokohelpi. Raaka-aineiden irtotiheys käyttökosteudessa vaihteli välillä 73–244 kg/m3 ja keskimääräinen kosteuspitoisuus 6,5–15 %. Useissa tapauksissa säkitettyjä raaka-aineita säkkikostutettiin haluttuun kosteuspitoisuuteen ennen pelletointia. Säkkikostutettujen raaka-aineiden kosteuspitoisuudet vaihtelivat tällöin välillä 12–14 m- %. Valtaosa tutkituista raaka-aineista ja niiden seoksista pystyttiin pelletoimaan puristimen matriisilla 8/40 mm, jossa puristuskanavan halkaisija oli 8 mm ja kanavan suoran osan pituus 40 mm. Vaikeuksia tuotti ainoastaan pelkän koivupurun ja ruokohelven pelletointi. Käytetty matriisi oli kanavapituudeltaan liian pitkä koivupurun pelletointiin nostaen puristusvastuksen suureksi. Ruokohelven pelletoinnin vaikeudet johtuivat pääasiassa pelletointiin liian karkeasta raaka-aineesta. Myös matriisia 8/55 mm kokeiltiin, mutta se osoittautui liian ”tiukaksi” valtaosalle puuraaka-aineista. Ainoastaan jyrsinturpeen pelletointi onnistui tällä matriisilla. Männynkuoren pelletointia ei matriisilla 8/55 mm yritetty. Kenttäkokeissa valmistetuista pelleteistä määritettiin erilaisia ominaisuuksia, kuten keskipituus, kosteuspitoisuus, irtotiheys, hienoaineksen määrä ja käsittelykestävyys. Lujuus mitattiin sekä Ligno-testillä että CEN-rummutuslujuuden määrityksellä. Lisäksi pelleteille määritettiin alkuaineanalyysi, tuhkapitoisuus ja lämpöarvo ENAS Oy:n laboratoriossa Jyväskylässä. Ligno-testauksessa parhaimman luokan pelletin tulee yltää arvoon 97,5 %. Pelletoitaessa raaka-aineita ja niiden seoksia tasomatriisikoneella sopivalla matriisilla yllettiin usein näihin tai parempiin tuloksiin. Puumateriaaleilla raaka-aineen optimaalinen lähtökosteus oli välillä 12–14 m- % ja turpeella sekä ruokohelvellä 14–16 m- %. Pelletointi onnistui tällöin vaivattomasti, kunhan sopivat puristimen ajoparametrit oli löydetty. Pellettiä alkoi muodostua matriisin puristuskanavien lämpötilan kohotessa noin 70 ºC. Pellettien lämpötila stabiilitilanteessa heti pelletoinnin jälkeen oli useissa tapauksissa 80–90 ºC. Pelletoinnin aikainen tehontarve vaihteli välillä 90–150 kWh/t, ollen suurimmillaan irtotiheydeltään keveillä materiaaleilla. Raaka-aineen suuri partikkelikoko kasvatti puristimen tehontarvetta. Tämä havaittiin selvästi lisättäessä karkeaa ruokohelpisilppua eri raaka-aineiden joukkoon. Kestävyydeltään erinomaisia pellettejä saatiin, kun raaka-aineena oli jyrsinturve, harvennusranka tai mäntypuru. Varsinkin jyrsinturpeen ja harvennusrangan seoksesta valmistetut pelletit osoittautuivat erittäin kestäviksi. Myös jyrsinturpeen ja ruokohelven sekä mäntypurun ja ruokohelven seoksien pelleteille määritettiin hyviä kestävyysarvoja. Männynkuoresta valmistetut pelletit jäivät Ligno-testauksessa kestävyydeltään alle 97,5 % rajan. Pääsyynä tähän oli kuoren pelletointiin käytetyn matriisin 8/40 mm liian lyhyet puristuskanavat.
Resumo:
Tämä insinöörityö tehtiin Vantaan Energia Oy:lle, joka tuottaa ja myy sähköä ja kaukolämpöä. Työn tarkoituksena on tutkia mahdollisuuksia parantaa Martinlaakson voimalaitoksen kaasuturbiinin jäähdytyskapasiteettia. Työn alussa esitellään kaasuturbiinilaitoksen ja kaasuturbiinin jäähdytysjärjestelmän toimintaa niiltä osin kuin se on työn ymmärtämiseksi tarpeellista. Voimalaitoksen kaasuturbiinilaitoksella on käytössä Suomessa harvinainen suljettu jäähdytysvesijärjestelmä, joka siirtää jäähdytyskohteissa syntyvän lämpöenergian ilmajäähdyttimien kautta ulkoilmaan. Työssä tutkitaan jäähdytysjärjestelmän jäähdytyskykyä sekä öljyjäähdyttimen ja generaattorin ilmajäähdyttimien tilaa lämpötiloja ja tehoja seuraamalla. Jäähdytysjärjestelmän kapasiteetti todettiin riittämättömäksi, kun ulkoilman lämpötila nousee yli +10 C:n. Jäähdytyskierto ei jäähdytä öljylämmönvaihdinta riittävästi, jolloin kaasuturbiinin voiteluöljy ylikuumenee lyhentäen öljyn käyttöikää sekä vaarantaen kaasuturbiinin osia. Jäähdytysjärjestelmän kapasiteettia voidaan parantaa lisäämällä neljäs ilmajäähdytin, lisäjäähdyttämällä raakavedellä tai lisäämällä öljyjäähdyttimen rinnalle kaukolämmön paluuvedellä jäähdyttävä lämmönvaihdin. Neljäs lämmönvaihdin ei riitä kattamaan tarvittavaa jäähdytystarvetta lämpötilan noustessa. Raakaveden käyttökustannukset ovat suuret eikä lämmöntalteenotto ole mahdollista. Kannattavin vaihtoehto on lisätä öljyjäähdyttimen rinnalle kaukolämmön paluuvedellä toimiva lämmönvaihdin, jonka hankintakustannukset ovat alhaiset saatavaan hyötyyn nähden. Parannuksen ansiosta kaasuturbiinin sähkötehoa voidaan nostaa 10 %:lla nykyisestä 50 MW:sta. Jäähdytyskapasiteetin parantamiseksi tehtävät muutokset ajoittuvat syksylle 2008, jolloin kaasuturbiini modifioidaan.
Resumo:
The objective of the research was to study the influence of temperature, oxygen pressure, catalysts loading and initial COD concentration of debarking wastewater on the pollutants during the catalytic oxidation. More importantly, how the addition of catalyst affects the wet oxidation process. The whole work was divided into two main sections, theoretical and experimental parts. The theoretical part reviews the pulp and paper industry from wood processing to paper production as well as operations that generate wastes. Treatment methods applicable for industrial pulp and paper mill effluents were also discussed. Wet oxidation and catalytic wet oxidation processes including mechanism, reactions, kinetics and industrial applications were previewed. In the experimental part, catalytic wet oxidation process were studied at 120-180°C, 0-10 bar oxygen pressure, 0-1 g/L catalyst concentration and 1000-3000 mg/L initial COD concentration. Responses, such as Chemical oxygen demand (COD), Total organic carbon (TOC), colour, lignin/tannin, Biochemical oxygen demand (BOD) and pH were measured. In the experiment, the best conditions occurred at 180°C, 10 bar, l g/L catalyst concentration and 3000mg/L initial COD. At these conditions; 74% COD, 97% lignin/tannin, 54% TOC, 90% colour were removed from the wastewater. pH was greatly reduced from 7 to 4.6. Lignin/tannin was removed most. Lignin/tannin showed linear dependency with colour during oxidation. Temperature made the most impact in reducing contaminants in debarked wastewater.
Resumo:
Työn kirjallisuusosassa selvitettiin eri tekijöiden (lämpötila, paine, mineralogia, partikkelikoko, sekoitus, kiintoainepitoisuus, liuoksen happo-, rauta- ja happipitoisuus) vaikutusta sinkkirikasteen suoraliuotusprosessin tärkeimpiin ilmiöihin (diffuusio, aineensiirto, reaktiokinetiikka). Kirjallisuusosassa kartoitettiin myös tämän hetkistä tietämystä niistä tekijöistä, jotka ovat oleellisia, kun sinkkirikasteen suoraliuotusprosessia mallinnetaan. Näitä tekijöitä ovat: sinkkirikasteiden liuotuksen kemia, sinkkirikasteiden liuotuksen kinetiikka ja mekanismit, kaasuneste aineensiirto ja kiinteäneste aineensiirto. Lisäksi selvitettiin millä tavoin aikaisemmissa tutkimuksissa sinkkirikasteiden suoraliuotusta on mallinnettu. Mallinnusosassa käsiteltiin atmosfääristä sinkkirikasteen suoraliuotusta, jossa hapettimena toimi ferri(III)rauta. Mallintamisessa käytettiin kirjallisuudessa esitettyjä mittaustuloksia ja mallintaminen tehtiin Modest tietokoneohjelmistolla. Työssä tehty atmosfäärisen suoraliuotuksen mallintaminen labo-ratoriomittakaavassa (laimeat liuokset ja pienet kiintoainepitoisuudet) antoi lupaavia tuloksia. Ongelmia mallin ennustuksen kanssa esiintyi pienissä happopitoisuuksissa, alhaisissa lämpötiloissa sekä pienillä ja suurilla partikkeleilla. Työn kirjallisuusosassa tunnistettiin ne ongelmakohdat, jotka vaativat lisätutkimuksia, jotta sinkkirikasteen atmosfääriselle suoraliuotukselle pystytään kehittämään simulointimalli. Näitä ovat: 1. Hapen liukoisuus ja aineensiirto teollisuuden käyttämissä sinkkirikastelietteissä, 2. Sopivien mittaustulosten puuttuminen, jotta atmosfääristä suoraliuotusta, jossa O2 ja Fe3+ toimivat hapettimena voitaisiin mallintaa, 3. Kiinteäneste aineensiirron merkitys sinkkirikasteen suoraliuotuksessa. Mallinnusosassa osoitettiin, että mekanistisella mallintamisella voidaan simuloida sinkkirikasteen atmosfääristä suoraliuotusta ainakin laboratoriomittakaavassa. Työn perusteella voidaan todeta, että sinkkirikasteen atmosfääriselle suoraliuotukselle voidaan työssä ehdotettujen jatkotutkimusten avulla kehittää numeerinen mekanistinen malli, jolla atmosfääristä sinkkirikasteiden suoraliuotusprosessia voidaan simuloida eri olosuhteissa.
Resumo:
Tässä diplomityössä tutkittiin nanosuodatuskalvojen puhdistusta ja kestävyyttä alkalipesuissa. Työn kirjallisuusosassa käsitellään kalvojen likaantumista ja eri puhdistusmenetelmiä, sekä vertaillaan kolmen nanosuodatuskalvon erotusominaisuuksia. Kokeellisessa osassa tutkittiin emäksisten pesukemikaalien vaikutusta kirjallisuusosassa esitettyihin kalvoihin. Käytetyt suodatuskalvot olivat Dow FilmTecTM NF-270, GE Osmonics Desal-5 DL ja Trisep XN45. Kalvojen puhdistukseen käytettiin Ecolabin P3-ultasil 110 ja 112 alkalipesukemikaaleja. Suodatuskokeet tehtiin laboratoriomittakaavan tasokalvojen suodatinlaitteistolla. Alkalikäsittelyitä tehtiin sekä liottamalla kalvoja säilytysastiassa että altistamalla näitä virtauksen ja paineen alaisuudessa. Vaihdettuja muuttujia oliat: pesuainekonsentraatio, lämpötila ja vaikutusaika. Kalvoissa tapahtuneita muutoksia arvioitiin mittaamalla permeabiliteettia sekä magnesiumsulfaatti- ja glukoosiretentioita. Suodatuslämpötilan nostaminen kasvatti lineaarisesti permeabiliteettia ja vastaavasti laski lineaarisesti retentiota. Kalvojen välillä ei ollut eroja permeabiliteettien lämpötilariippuvuuksissa. DL:n retentio laski vähiten lämpötilaa nostettaessa. Liotuskokeiden perusteella kestävät DL- ja NF-270-kalvot noin 1 % P3-ultrasil 110 liuoksia, sekä XN-kalvo 1,2–1,5 %:sia liuoksia, kun lämpötilana on 44 ºC ja vaikutusaikana 50 vrk. Käytettyjen pesukemikaalien välillä ei havaittu eroja. Pienen paineen ja virtauksen alla suoritetuissa käsittelyissä havaittiin alkalihajoamisen noudattavan likimain ensimmäisen kertaluvun reaktiokinetiikkaa ja käyttäytyvän likimain Arrheniuksen yhtälön ennustamalla tavalla. Myös näissä kokeissa XN45 osoittautui kestävimmäksi. Retentioiden heikkenemistä ei pystytty luotettavasti ennustamaan permeabiliteetin perusteella. Työssä osoitettiin että kalvojen muutoksia alkalipesuissa ajan funktiona voidaan ennustaa ja näin teollisuudessa voidaan ennakoida kalvojen vaihtotarvetta.