981 resultados para joint function
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.
Resumo:
The paper describes the use of radial basis function neural networks with Gaussian basis functions to classify incomplete feature vectors. The method uses the fact that any marginal distribution of a Gaussian distribution can be determined from the mean vector and covariance matrix of the joint distribution.
Application of The Structure Function Method to Polarized and Unpolarized electron-Proton Scattering
Resumo:
Hypothesis: The aim of this study was to measure the mass loading effect of an active middle-ear implant (the Vibrant Soundbridge) in cadaver temporal bones. Background: Implantable middle ear hearing devices such as Vibrant Soundbridge have been used as an alternative to conventional hearing aids for the rehabilitation of sensorineural hearing loss. Other than the obvious disadvantage of requiring implantation middle ear surgery, it also applies a direct weight on the ossicular chain which, in turn, may have an impact on residual hearing. Previous studies have shown that applying a mass directly on the ossicular chain has a damping effect on its response to sound. However, little has been done to investigate the magnitude and the frequency characteristics of the mass loading effect in devices such as the Vibrant Soundbridge. Methods: Five fresh cadaver temporal bones were used. The stapes displacement was measured using laser Doppler vibrometry before and after the placement of a Vibrant Sound-bridge floating mass transducer. The effects of mass and attachment site were compared with the unloaded response. Measurements were obtained at frequencies between 0.1 and 10 kHz and at acoustic input levels of 100 dB sound pressure level. Each temporal bone acted as its own control. Results: Placement of the floating mass transducer caused a reduction of the stapes displacement. There were variations between the bones. The change of the stapes displacement varied from 0 dB to 28 dB. The effect was more prominent at frequencies above 1,000 Hz. Placing the floating mass transducer close to the incudostapedial joint reduced the mass loading effect. Conclusion: The floating mass transducer produces a measurable reduction of the stapes displacement in the temporal bone model. The effect is more prominent at high frequencies.
Resumo:
Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression application. The locally regularised orthogonal least squares (LROLS) algorithm with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF network models, is extended to the fully complex-valued RBF network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully complex-valued RBF network.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
The doctrine of joint criminal enterprise is in disarray. Despite repeated judicial scrutiny at the highest level, the doctrine's scope, proper doctrinal basis and function in relation to other modes of complicity remain uncertain. This article examines the doctrine's elements and underlying principles. It argues that while joint criminal enterprise is largely used to make individuals liable for offences committed by their associates in excess of the common criminal purpose, its proper function is to police the limits of associate liability and thus to exculpate rather than inculpate. The doctrine governs not only instances of accessorial liability; it also applies where the parties involved are joint principal offenders. As this puts into question the prevalent view that joint criminal enterprise is a form of secondary participation that results in accessorial liability, the article concludes that it is best seen as a doctrine sui generis.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.
Resumo:
47 end-stage TMJ patients with high occlusal plane angulation, treated with TMJ custom-fitted total joint prostheses and simultaneous maxillo-mandibular counter-clockwise rotation were evaluated for pain and dysfunction presurgery (T1) and at the longest follow-up (T2). Patients subjectively rated their facial pain/headache, TMJ pain, jaw function, diet and disability. Objective functional changes were determined by measuring maximum interincisal opening (MIO) and laterotrusive movements. Patients were divided according to the number of previous failed TMJ surgeries: Group 1 (0-1), Group 2 (2 or more). Significant subjective pain and dysfunction improvements (37-52%) were observed (<0.001). MIO increased 14% but lateral excursion decreased 60%. The groups presented similar absolute changes, but Group 2 showed more dysfunction at T1 and T2. For patients who did not receive fat grafts around the prostheses and had previous failure of proplast/teflon and or silastic TMJ implants, more than half required surgery for TMJ debridement and removal of foreign body giant cell reaction and heterotopic bone formation. End-stage TMJ patients can be treated in one operation with TMJ custom-made total joint prostheses and maxillo-mandibular counter-clockwise rotation, for correction of dentofacial deformity and improvement in pain and TMJ dysfunction; Group 1 patients had better results than Group 2 patients.
Resumo:
Objective: The aim of the present study was to describe the clinical and MRI findings of the temporomandibular joint (TMJ) in patients with major depressive disorders (MDDs) of the non-psychotic type.Methods: 40 patients (80 TMJs) who were diagnosed as having MDDs were selected for this study. The clinical examination of the TMJs was conducted according to the research diagnostic criteria and temporomandibular disorders (TMDs). The MRIs were obtained bilaterally in each patient with axial, parasagittal and paracoronal sections within a real-time dynamic sequence. Two trained oral radiologists assessed all images. For statistical analyses, Fisher's exact test and chi(2) test were applied (alpha = 0.05).Results: Migraine was reported in 52.5% of subjects. Considering disc position, statistically significant differences between opening patterns with and without alteration (p = 0.00) and between present and absent joint noises (p = 0.00) were found. Regarding muscular pain, patients with and without abnormalities in disc function and patients with and without abnormalities in disc position were not statistically significant (p = 0.42 and p = 0.40, respectively). Significant differences between mandibular pathway with and without abnormalities (p=0.00) and between present and absent joint noises (p=0.00) were observed.Conclusion: Based on the preliminary results observed by clinical and MRI examination of the TMJ, no direct relationship could be determined between MDDs and TMDs. Dentomaxillofacial Radiology (2012) 41, 316-322. doi: 10.1259/dmfr/27328352
Resumo:
Economic Dispatch (ED) problems have recently been solved by artificial neural networks approaches. In most of these dispatch models, the cost function must be linear or quadratic. Therefore, functions that have several minimum points represent a problem to the simulation since these approaches have not accepted nonlinear cost function. Another drawback pointed out in the literature is that some of these neural approaches fail to converge efficiently towards feasible equilibrium points. This paper discusses the application of a modified Hopfield architecture for solving ED problems defined by nonlinear cost function. The internal parameters of the neural network adopted here are computed using the valid-subspace technique, which guarantees convergence to equilibrium points that represent a solution for the ED problem. Simulation results and a comparative analysis involving a 3-bus test system are presented to illustrate efficiency of the proposed approach.