958 resultados para irregularities in proceeding by plaintiff
Resumo:
This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into account the results obtained with other approaches. Finally, conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Growing concern about the contamination of wastewaters by antibiotics demands fast but sensitive analytical methodologies, for the screening of a large number of samples. The purpose of this work was to develop a simple methodology, using direct injection of the samples, by HPLC with diode array detection (DAD), for a multiresidue analysis of five antibiotics of different classes. Wastewater from an urban water treatment plant was selected as a model to study possible coelution of interfering compounds. The linearity interval ranged from 40 to 400 µg/L for amoxicillin (Amox), metronidazole (Metro), cefazolin (Cefa), and chloramphenicol (Chloram) and from 20 to 200 µg/L for sulfamethoxazole (Sulfa), with LODs lower than 14 µg/L. Repeatability, expressed by the CV of six repeated injections, ranged from 1 to 8%, while the intermediate precision varied between 2 and 11%. The recovery ranged from 90 to 109%. This method enables the fast screening of a large number of samples, with an expanded uncertainty in the 1–22% range. The advantage of the proposed method is to significantly reduce the number of samples to be analyzed by more complex methods.
Resumo:
A flow injection analysis (FIA) system comprising a tartrate- (TAT) selective electrode has been developed for determination of tartaric acid in wines. Several electrodes constructed for this purpose had a PVC membrane with a complex of quaternary ammonium and TAT as anion exchanger, a phenol derivative as additive, and a more or less polar mediator solvent. Characterization of the electrodes showed behavior was best for membranes with o-nitrophenyl octyl ether as solvent. On injection of 500 μL into a phosphate buffer carrier (pH = 3.1; ionic strength 10–2 mol/L) flowing at 3 mL/min, the slope was 58.06 ± 0.6 with a lower limit of linear range of 5.0 × 10–4 mol/L TAT and R2 = 0.9989. The interference of several species, e.g. chloride, bromide, iodide, nitrate, gallic acid, tannin, sucrose, glucose, fructose, acetate, and citrate, was evaluated in terms of potentiometric selectivity coefficients. The Hofmeister series was followed for inorganic species and the most interfering organic ion was citrate. When red and white wines were analyzed and the results compared with those from an independent method they were found to be accurate, with relative standard deviations below 5.0%.
Resumo:
A methodology for the determination of the pesticide chlorfenvinphos by microwave-assisted solvent extraction and square-wave cathodic stripping voltammetry at a mercury film ultramicroelectrode in soil samples is proposed. Optimization of microwave solvent extraction performed with two soils, selected for having significantly different properties, indicated that the optimum solvent for extracting chlorfenvinphos is hexane-acetone (1:1, v/v). The voltammetric procedure is based on controlled adsorptive accumulation of the insecticide at the potential of -0.60 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 6.2). The detection limit obtained for a 10 s collection time was 3.0 x 10-8 mol l-1. The validity of the developed methodology was assessed by recovery experiments at the 0.100 µg g-1 level. The average recoveries and standard deviations for the global procedure reached byMASE-square-wave voltammetry were 90.2±2.8% and 92.1±3.4% for type I (soil rich in organic matter) and type II (sandy soil) samples, respectively. These results are in accordance to the expected values which show that the method has a good accuracy.
Resumo:
Seven pyrethroids (bifenthrin, fenpropathrin, k-cyhalothrin, permethrin, a-cypermethrin, fenvalerate, and deltamethrin) were extracted from water using C18 solid-phase extraction disks, followed by gas chromatography with an electron capture detector (GC-ECD) analysis. The limits of detection in water samples ranged from 0.5 ng L-1 (fenpropathrin) to 110 ng L- 1 (permethrin), applying the calibration graph. The effects of different numbers of (re)utilizations of the same disks (up to four times with several concentrations) on the recoveries of the pyrethroids were considered. The recoveries were all between 70 and 120% after four utilizations of the same disk. There was no difference between these recoveries at a confidence level of 95%.
Resumo:
A new flow-injection analytical procedure is proposed for the determination of the total amount of polyphenols in wines; the method is based on the formation of a colored complex between 4-aminoantipyrine and phenols, in the presence of an oxidizing reagent. The oxidizing agents hexacyanoferrate(III), peroxodisulfate, and tetroxoiodate(VII) were tested. Batch trials were first performed to select appropriate oxidizing agents, pH, and concentration ratios of reagents, on the basis of their effect on the stability of the colored complex. Conditions selected as a result of these trials were implemented in a flow-injection analytical system in which the influence of injection volume, flow rate, and reaction- coil length, was evaluated. Under the optimum conditions the total amount of polyphenols, expressed as gallic acid, could be determined within a concentration range of 36 to 544 mg L–1, and with a sensitivity of 344 L mol–1 cm–1 and an RSD <1.1%. The reproducibility of analytical readings was indicative of standard deviations <2%. Interference from sugars, tartaric acid, ascorbic acid, methanol, ammonium sulfate, and potassium chloride was negligible. The proposed system was applied to the determination of total polyphenols in red wines, and enabled analysis of approximately 55 samples h–1. Results were usually precise and accurate; the RSD was <3.9% and relative errors, by the Folin–Ciocalteu method, <5.1%.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.
Resumo:
IIF in the detection of invasive and classic enteropathogenic E. coli and Shigella serotypes was compared with traditional coproculture methods. IIP results agreed with the coproculture findings in 128 out of 140 cases tested for enteropathogenic E. coli (91%) and in 108 out of 112 for Shigella (96%). All cases with positive reactions by coproculture were confirmed by IIP. In the control group it were obtained by IIF 12 cases with positive reactions for enteropathogenic E. coli and 4 cases for Shigella, including two cases of mixed infection by E. coli 026/Sh. dysenteriae and E. coli 0124/Sh. dysenteriae. It was discussed the high sensitivity and specificity of the IIF when compared with the traditional methods, being suggested that IIF is a valuable tool in epidemiological studies involving these organisms and an important aid in the stablishment of an early presumptive diagnosis of the acute infantile diarrhea.
Resumo:
In two distinct experiments, immature S. mansoni worms (LE strain, Belo Horizonte, Brazil), aged 20 days, obtained from the portal system of white outbred mice, were irradiated with 14 and 4 Krad, respectively. Afterwards, the worms were directly inoculated into the portal vein of normal mice. Inoculation was performed with 20 irradiated worms per animal. Fifty days after inoculation, the mice that received 4 and 14 Krad-irradiated worms and their respective controls were infected with S. mansoni cercariae (LE strain), by transcutaneous route. Twenty days after this challenge infection, the animals were sacrificed and perfused for mature irradiated (90-day-old) and immature (20-day-old) worm counts. Analysis of the results showed that statistically significant protection against cercariae occurred in both groups with irradiated worms.
Resumo:
Applied Physics B Lasers and Optics, vol.71
Resumo:
The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.
Resumo:
The cleaning of syngas is one of the most important challenges in the development of technologies based on gasification of biomass. Tar is an undesired byproduct because, once condensed, it can cause fouling and plugging and damage the downstream equipment. Thermochemical methods for tar destruction, which include catalytic cracking and thermal cracking, are intrinsically attractive because they are energetically efficient and no movable parts are required nor byproducts are produced. The main difficulty with these methods is the tendency for tar to polymerize at high temperatures. An alternative to tar removal is the complete combustion of the syngas in a porous burner directly as it leaves the particle capture system. In this context, the main aim of this study is to evaluate the destruction of the tar present in the syngas from biomass gasification by combustion in porous media. A gas mixture was used to emulate the syngas, which included toluene as a tar surrogate. Initially, CHEMKIN was used to assess the potential of the proposed solution. The calculations revealed the complete destruction of the tar surrogate for a wide range of operating conditions and indicated that the most important reactions in the toluene conversion are C6H5CH3 + OH <-> C6H5CH2 + H2O, C6H5CH3 + OH <-> C6H4CH3 + H2O, and C6H5CH3 + O <-> OC6H4CH3 + H and that the formation of toluene can occur through C6H5CH2 + H <-> C6H5CH3. Subsequently, experimental tests were performed in a porous burner fired with pure methane and syngas for two equivalence ratios and three flow velocities. In these tests, the toluene concentration in the syngas varied from 50 to 200 g/Nm(3). In line with the CHEMKIN calculations, the results revealed that toluene was almost completely destroyed for all tested conditions and that the process did not affect the performance of the porous burner regarding the emissions of CO, hydrocarbons, and NOx.
Resumo:
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.