995 resultados para ion-trap
Resumo:
The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.
Resumo:
This article develops a simple analytical expression that relates ion axial secular frequency to field aberration in ion trap mass spectrometers. Hexapole and octopole aberrations have been considered in the present computations. The equation of motion of the ions in a pseudopotential well with these superpositions has the form of a Duffing-like equation and a perturbation method has been used to obtain the expression for ion secular frequency as a function of field imperfections. The expression indicates that the frequency shift is sensitive to the sign of the octopole superposition and insensitive to the sign of the hexapole superposition. Further, for weak multipole superposition of the same magnitude, octopole superposition causes a larger frequency shift in comparison to hexapole superposition.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In recent work (Int. J. Mass Spec., vol. 282, pp. 112–122) we have considered the effect of apertures on the fields inside rf traps at points on the trap axis. We now complement and complete that work by considering off-axis fields in axially symmetric (referred to as “3D”) and in two dimensional (“2D”) ion traps whose electrodes have apertures, i.e., holes in 3D and slits in 2D. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with apertures artificially closed. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture. In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant-valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap-specific approximation. The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and the rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30%, and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a technique to vary the electric field within a cylindrical ion trap (CIT) mass spectrometer while it is in operation. In this technique, the electrodes of the CIT are split into number of mini-electrodes and different voltages are applied to these split-electrodes to achieve the desired field. In our study we have investigated two geometries of the split-electrode CIT. In the first, we retain the flat endcap electrodes of the CIT but split the ring electrode into five mini-rings. In the second configuration, we split the ring electrode of the CIT into three mini-rings and also divide the endcaps into two mini-discs. By applying different potentials to the mini-rings and mini-discs of these geometries we have shown that the field within the trap can be optimized to desired values. In our study, two different types of fields were targeted. In the first, potentials were adjusted to obtain a linear electric field and, in the second, a controlled higher order even multipole field was obtained by adjusting the potential. We have shown that the different potentials required can be derived from a single RF generator by connecting appropriate capacitor terminations to split electrodes. The field within the trap can be modified by changing the values of the external capacitors. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.
Resumo:
A number of alternative designs are presented for Penning ion traps suitable for quantum information processing (QIP) applications with atomic ions. The first trap design is a simple array of long straight wires, which allows easy optical access. A prototype of this trap has been built to trap Ca+ and a simple electronic detection scheme has been employed to demonstrate the operation of the trap. Another trap design consists of a conducting plate with a hole in it situated above a continuous conducting plane. The final trap design is based on an array of pad electrodes. Although this trap design lacks the open geometry of the other traps described above, the pad design may prove useful in a hybrid scheme in which information processing and qubit storage take place in different types of trap. The behaviour of the pad traps is simulated numerically and techniques for moving ions rapidly between traps are discussed. Future experiments with these various designs are discussed. All of the designs lend themselves to the construction of multiple trap arrays, as required for scalable ion trap QIP.
Resumo:
Paeoniflorin standard was first investigated by electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) using a sustained off-resonance irradiation (SORI) collision-induced dissociation (CID) method at high mass resolution. The experimental results demonstrated that the unambiguous elemental composition of product ions can be obtained at high mass resolution. Comparing MS/MS spectra and the experimental methods of hydrogen and deuterium exchange, the logical fragmentation pathways of paeoniflorin have been proposed. Then, the extracts of the traditional Chinese medicine Paeonia lactiflora Pall. were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). By comparison with the ESI-FTICR-MS/MS data of paeoniflorin, the isomers paeoniflorin and albiflorin in Paeonia lactiflora Pall. have been identified using HPLC/MS with CID in an ion trap and in-source CID. Furthermore, using the characteristic fragmentation pathways, the retention times (t(R)) in HPLC and MS/MS spectra, the structures of three other kinds of monoterpene glycoside compounds have been identified on-line without time-consuming isolation.
Resumo:
The conceptual design of a new electron beam ion trap primarily intended for the study of electron-ion interactions is outlined along with some preliminary predictions regarding its capabilities. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.
Resumo:
When highly charged ions are incident on a surface, part of their potential energy is emitted as characteristic radiation. The energies and yields of these characteristic x rays have been measured for a series of elements at the Tokyo electron-beam ion trap. These data have been used to develop a simple model of the relaxation of the hollow atoms which are formed as the ion approaches the surface, as well as a set of semiempirical scaling laws, which allow for the ready calculation of the K-shell x-ray spectrum which would be produced by an arbitrary slow bare or hydrogenlike ion on a surface. These semiempirical scaling laws can be used to assess the merit of highly charged ion fluorescence x-ray generation in a wide range of applications.
Resumo:
Cultures of cosmomycin D-producing Streptomyces olindensis ICB20 that were propagated for many generations underwent mutations that resulted in production of a range of related anthracyclines by the bacteria. The anthracyclines that retained the two trisaccharide chains of the parent compound were separated by HPLC. Exact mass determination of these compounds revealed that they differed from cosmomycin D (CosD) in that they contained one to three fewer oxygen atoms (loss of hydroxyl groups). Some of the anthracyclines that were separated by HPLC had the same mass. The location from which the hydroxyl groups had been lost relative to CosD (on the aglycone and/or on the sugar residues) was probed by collisionally-activated dissociation using an electrospray ionisation linear quadrupole ion trap mass spectrometer. The presence of anthracyclines with the same mass, but different structure, was confirmed using an electrospray ionisation travelling wave ion mobility mass spectrometer.
Resumo:
Die Elektronen in wasserstoff- und lithium-ähnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frühere Messungen an wasserstoffähnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgeführt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der großen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschöpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-ähnliche schwere Ionen mit einer um 2-3 Größenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwärtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell für die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang für die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang für die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewünschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Kühlprozess für die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Kühlung in einer lasergekühlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle für die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkörperlasersystem für die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlänge und erwies sich während der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlässig. Desweiteren wurde eine Ionequelle für die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoßionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbündel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekühlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lässt sich sowohl die Sensitivität auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Größenordnung von ≈ 100 mK nach wenigen Sekunden Kühlzeit belegen.
Resumo:
The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).