190 resultados para interglacials
Resumo:
The rain regime of the Levant during the late Quaternary was controlled primarily by Mediterranean cyclonic systems associated with North Atlantic climate shifts. Lake levels in the Dead Sea basin have been robust recorders of the regional hydrology and generally indicate highstand (wet) conditions throughout glacial intervals and lowstands (dry) during interglacials. However, sporadic deposition of travertines and speleothems occurred in the Negev Desert and Arava Valley during past interglacials, suggesting intrusions of humidity from southern sources probably in association with enhanced activity of mid-latitude Red Sea synoptic troughs and/or low-latitude tropical plumes. The southerly incursions of wetness were superimposed on the long-term interglacial Levantine arid conditions, as reflected by the current prevailing hyperaridity, and could have had an important impact on human migra- tion through the Red Sea-Dead Sea corridor.
Resumo:
Quantitative coccolithophore analyses were performed in core MD01-2446, located in the mid-latitude North Atlantic, to reconstruct climatically induced sea-surface water conditions throughout Marine Isotope Stages (MIS) 14-9. The data are compared to new and available paleoenvironmental proxies from the same site as well as other nearby North Atlantic records that support the coccolithophore signature at glacial-interglacial to millennial climate scale. Total coccolithophore absolute abundance increases during interglacials but abruptly drops during the colder glacial phases and deglaciations. Coccolithophore warm-water taxa (wwt) indicate that MIS11c and MIS9e experienced warmer and more stable conditions throughout the whole photic zone compared to MIS13. MIS11 was a long-lasting warmer and stable interglacial characterized by a climate optimum during MIS11c when a more prominent influence of the subtropical front at the site is inferred. The wwt pattern also suggests distinct interstadial and stadial events lasting about 4-10 kyr. The glacial increases of Gephyrocapsa margereli-G. muellerae 3-4 µm along with higher values of Corg, additionally supported by the total alkenone abundance at Site U1313, indicate more productive surface waters, likely reflecting the migration of the polar front into the mid-latitude North Atlantic. Distinctive peaks of G. margereli-muellerae (> 4 µm), C. pelagicus pelagicus, Neogloboquadrina pachyderma left coiling, and reworked nannofossils, combined with minima in total nannofossil accumulation rate, are tracers of Heinrich-type events during MIS12 and MIS10. Additional Heinrich-type events are suggested during MIS12 and MIS14 based on biotic proxies, and we discuss possible iceberg sources at these times. Our results improve the understanding of mid-Brunhes paleoclimate and the impact on phytoplankton diversity in the mid-latitude North Atlantic region.
Resumo:
While onboard ship during Leg 177, we used variations in sediment physical properties (mainly percent color reflectance) in conjunction with biomagnetostratigraphy to correlate among sites and predict the position of marine isotope stages (MISs) (e.g., see fig. F11 in Shipboard Scientific Party, 1999, p. 45). Our working assumption was that physical properties of Leg 177 sediments are controlled mainly by variations in carbonate content. Previous studies of Southern Ocean sediment cores have shown that carbonate concentrations are relatively high during interglacial stages and low during glacial stages at sites located within the Polar Frontal Zone (PFZ). Today, the PFZ marks a lithologic boundary in underlying sediment separating calcareous oozes to the north and silica-rich facies to the south (Hays et al., 1976). Although there is debate whether the position of the "physical" PFZ actually moved during glacial-interglacial cycles (Charles and Fairbanks, 1990; Matsumoto et al., 2001), the "biochemical" PFZ, as expressed by the CaCO3/opal boundary in sediments, certainly migrated north during glacials and south during interglacials. This gave rise to lithologic variations that are useful for stratigraphic correlation. At Leg 177 sites located north of the PFZ and at sublysoclinal depths, we expected the same pattern of carbonate variation because cores in the Atlantic basin are marked by increased carbonate dissolution during glacial periods and increased preservation during interglacials (Crowley, 1985).
Resumo:
Stable isotope measurements on the planktonic foraminifer Globigerinoides ruber (white) have been carried out on a number of selected deep-seas sediment cores from the South Lau and Norlh Fiji Basins. The d18O-curves show good correlation with the inter-ocean oraphic correlation composite d18O-record of the standard reference section (Prell et al. 1986), which, in combination with the chronostratigraphic classifications of Herterich & Sarnthein (1984, modified) and Imbrie et al. 1984), allows a detailed dating of the sedimentary sequences. The deepest layers in core no. 119 (southern Lau Basin) could be assigned to Isotope Stage 24. Measurements made on bulk carbonate in two cores show a much higher glacial-interglacial amplitude, allowing the general identification of the conventional oxygen isotope stages. The d13C-values of the benthic foraminifer Cibicidoides wuellerstorfi show progressively lighter values northwards reflecting an increasing contribution of the isotopically lighter CO2 from the remineralisation of organic matter during the general northward movement of the deep water masses. Cyclicities in the sedimentation rates were observed in core nos. 117 and 119 (both southern Lau Basin) where the interglacials exhibit higher levels than the glacials. Calculated new or export paleoproductivity show that the glacials had higher productivity in the euphotic zone. From the oxygen isotope stratigraphy, the five ash layers in core nos. 117 and 119 could be dated as about 530 ka B.P. in Stage 14, 695 ka B.P. in Stage 18, 775 ka B.P. in Stage 21, 790 ka B.P. and 825 ka B.P. in Stage 22. Carbonate dissolution occurred during stages 5, 8 and 10 to 12.
Resumo:
We report high temporal resolution osmium isotopes records of bulk sediment and sediment leachates from DSDP Site 480 (Gulf of California) over the last 30 ka; from ODP Site 849 (Eastern equatorial Pacific) from the last 200 ka and from ODP Site 1002C (Cariaco Basin) across the 9-17 ka time interval in order to critically evaluate claims of a global 10% shift in the 187Os/188Os of seawater from glacial to interglacial intervals. We use organic-rich continental margin sites and carbonate-rich pelagic sites to isolate the temporal variations of the osmium seawater isotopic composition. Our results reveal that variations in 187Os/188Os fail to correlate with global changes in temperature across glacials/interglacials cycles as previously claimed. Instead, these results indicate differences of a few percent in the measured 187Os/188Os between each oceanic basin. We argue that these differences strongly suggest that seawater is not well homogenized with respect to its Os isotope composition.
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.
Resumo:
Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.
Resumo:
It is still an open question how equilibrium warming in response to increasing radiative forcing - the specific equilibrium climate sensitivity S - depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large.
Resumo:
Ocean Drilling Program Site 1002 in the Cariaco Basin was drilled in the final two days of Leg 165 with only a short transit remaining to the final port of San Juan, Puerto Rico. Because of severe time constraints, cores from only the first of the three long replicate holes (Hole 1002C) were opened at sea for visual description, and the shipboard sampling was restricted to the biostratigraphic examination of core catchers. The limited sampling and general scarcity of biostratigraphic datums within the late Quaternary interval covered by this greatly expanded hemipelagic sequence resulted in a very poorly defined age model for Site 1002 as reported in the Leg 165 Initial Reports volume of the Proceedings of the Ocean Drilling Program. Here, we present for the first time a new integrated stratigraphy for Site 1002 based on the standard of late Quaternary oxygen-isotope variations linked to a suite of refined biostratigraphic datums. These new data show that the sediment sequence recovered by Leg 165 in the Cariaco Basin is continuous and spans the time interval from 0 to ~580 ka, with a basal age roughly twice as old as initially suspected from the tentative shipboard identification of a single biostratigraphic datum. Lithologic subunits recognized at Site 1002 are here tied into this new stratigraphic framework, and temporal variations in major sediment components are reported. The biogenic carbonate, opal, and organic carbon contents of sediments in the Cariaco Basin tend to be high during interglacials, whereas the terrigenous contents of the sediments increase during glacials. Glacioeustatic variations in sea level are likely to exert a dominant control on these first-order variations in lithology, with glacial surface productivity and the nutrient content of waters in the Cariaco Basin affected by shoaling glacial sill depths, and glacial terrigenous inputs affected by narrowing of the inner shelf and increased proximity of direct riverine sources during sea-level lowstands.
Resumo:
Abundance records of planktonic foraminifera (>150 µm) from the upper 520 m of ODP Site 1073 (Hole 1073A, Leg 174A, 639 m water depth) have been integrated with SPECMAP-derived isotope stratigraphy, percentage of calcium carbonate, and coarse sediment fraction data in order to investigate the Pleistocene climatic history of the New Jersey margin. Six planktonic taxonomic groups dominate the foraminiferal assemblage at Site 1073: Neogloboquadrina pachyderma (d) (mean 33.8%), Turborotalita quinqueloba (18.5%), N. pachyderma (s) (18.4%), Globigerina bulloides group (11.4%), Globorotalia inflata group (9.4%), and Globigerinita glutinata (4.1%). Based on the distributions of these six foraminiferal groups, the Pleistocene section can be divided into three paleoclimatic intervals: Interval I (intermediate) corresponds to the Quaternary sediments from sequence boundary pp1 to the seafloor (79.5-0 mbsf; Emiliania huxleyi acme [85 ka] at 72 mbsf); Interval II (warm) occurs between sequence boundaries pp3 and pp1 (325-79.5 mbsf; last occurrence of Pseudoemiliania lacunosa [460 ka] at 330 mbsf); and Interval III (coldest) occurs between sequence boundaries pp4 and pp3 (520-325 mbsf; Calcareous nannofossils and dinocysts in proximity to pp4 indicate that the sedimentary record for 0.9-1.7 Ma is either missing altogether or highly condensed within the basal few meters of the section). Neogloboquadrina pachyderma (d) displays eight peaks of abundance which correlate, for the most part, with depleted delta18O values, increases in calcium carbonate percentages, low coarse fraction percentages, increased planktonic fragmentation (greater dissolution), and low N. pachyderma (s) abundances. These intervals are interpreted as representing warmer/interglacial conditions. Neogloboquadrina pachyderma (s) displays seven peaks of abundance which correlate, for the most part, with delta18O increases, decreases in calcium carbonate percentages, increases in coarse fraction percentages, and low N. pachyderma (d) abundances. These intervals are interpreted as representing cooler/glacial conditions. In Interval III, a faunal response to relative changes in sea-surface temperature is reflected by abundance peaks in Neogloboquadrina pachyderma (d), followed by Turborotalita quinqueloba and then N. pachyderma (s) (proceeding from warmest to coolest, respectively). This tripartite response is consistent with the oxygen isotope record and, although not as clear, also occurs in Intervals I and II. Six peaks/peak intervals of Globigerina bulloides abundance are closely matched by peaks in Globigerinita glutinata and occur within oxygen isotope stage (OIS) 2 (latter part) 3, 4, 5, 8, 9, 13(?), 14(?), and 15(?). We speculate that these intervals reflect increased upwelling and nutrient levels during both glacials and interglacials. Eight peak intervals of Globorotalia inflata show a general inverse correlation with G. bulloides and may reflect lowered nutrient and warmer surface waters.
Resumo:
High-resolution records of glacial-interglacial variations in biogenic carbonate, opal, and detritus (derived from non-destructive core log measurements of density, P-wave velocity and color; r >= 0.9) from 15 sediment sites in the eastern equatorial (sampling resolution is ~1 kyr) clear response to eccentricity and precession forcing. For the Peru Basin, we generate a high-resolution (21 kyr increment) orbitally-based chronology for the last 1.3 Ma. Spectral analysis indicates that the 100 kyr cycle became dominant at roughly 1.2 Ma, 200-300 kyr earlier than reported for other paleoclimatic records. The response to orbital forcing is weaker since the Mid-Brunhes Dissolution Event (at 400 ka). A west-east reconstruction of biogenic sedimentation in the Peru Basin (four cores; 91-85°W) distinguishes equatorial and coastal upwelling systems in the western and eastern sites, respectively. A north-south reconstruction perpendicular to the equatorial upwelling system (11 cores, 11°N-°3S) shows high carbonate contents (>= 50%) between 6°N and 4°S and highly variable opal contents between 2°N and 4°S. Carbonate cycles B-6, B-8, B-10, B-12, B-14, M-2, and M-6 are well developed with B-10 (430 ka) as the most prominent cycle. Carbonate highs during glacials and glacial-interglacial transitions extended up to 400 km north and south compared to interglacial or interglacial^glacial carbonate lows. Our reconstruction thus favors glacial-interglacial expansion and contraction of the equatorial upwelling system rather than shifting north or south. Elevated accumulation rates are documented near the equator from 6°N to 4°S and from 2°N to 4°S for carbonate and opal, respectively. Accumulation rates are higher during glacials and glacial-interglacial transitions in all cores, whereas increased dissolution is concentrated on Peru Basin sediments close to the carbonate compensation depth and occurred during interglacials or interglacial-glacial transitions.
Resumo:
This is part 2 of a study examining southwest African continental margin sediments from nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) representing two glacial (MIS 2 and 6a) and two interglacial stages (MIS 1 and 5e). Contents, distribution patterns, and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) as indicators of land plant vegetation of different biosynthetic types were correlated with concentrations and distributions of pollen taxa in sediments of the same time horizons. Selected single pollen type data reveal details of vegetation changes, but the overall picture is best illustrated by summing pollen known to predominantly derive from C4 plants or C4 plus CAM plants. The C4 plant signals in the biomarkers are recorded in the delta13C data and in the abundances of C31 and C33 n-alkanes, and the C32 n-alkanol. Calculated clusters of wind trajectories for austral summer and winter situations for the Holocene and the Last Glacial Maximum afford information on the source areas for the lipids and pollen and their transport pathways to the ocean. This multidisciplinary approach provides clear evidence of latitudinal differences in leaf wax lipid and pollen composition, with the Holocene sedimentary data paralleling the current major phytogeographic zonations. The northern sites (Congo Fan area and northern Angola Basin) get most of their terrestrial material from the Congo Basin and the Angolan highlands dominated by C3 plants. Airborne particulates derived from the western and central South African hinterland dominated by deserts, semideserts, and savannah regions are rich in organic matter from C4 plants. As can be expected from the present and glacial positions of the phytogeographic zones, the carbon isotopic signatures of n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. In the northern part of the transect the relative importance of C4 plant indicators is higher during the glacials than in the interglacials, indicating a northward extension of arid zones favoring grass vegetation. In the south, where grass-rich vegetation merges into semidesert and desert, the difference in C4 plant indicators is small.
Resumo:
We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.