955 resultados para intense neutron flux


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Decomposition of organic matter combined with density stratification generate a pronounced intermediate water oxygen minimum zone (OMZ) in the northwest Indian Ocean. This zone currently lies between water depths of 200 and 2000 m and extends approximately 5000 km southeast from the Arabian coast. Based upon benthic foraminiferal assemblage changes, it has been suggested that this OMZ was even more extensive during the late Miocene-early Pliocene (6.5-3.0 Ma), with a maximum volume and/or intensity at approximately 5.0 Ma. While this inference may contribute to an understanding of the history of northwest Indian Ocean upwelling, corroborating geochemical evidence for this interpretation has heretofore been lacking. Ocean Drilling Program (ODP) sites 752, 754, and 757 on Broken and Ninetyeast ridges are located within central Indian Ocean intermediate water depths (1086-1650 m) but outside the present lateral dimensions of the Indian Ocean OMZ. High-resolution chemical analyses of sediment from these sites indicate significant reductions in the flux of Mn and normalized Mn concentrations between 6.5 and 3.0 Ma that are most pronounced at approximately 5.0 Ma. Because late Miocene-Pliocene paleodepths for these sites were essentially the same as at present and because extremely low sedimentation rates (0.3-1.3 cm/ky) most likely precluded sedimentary metal oxide diagenesis, we suggest that the observed Mn depletions reflect diminished deposition of reducible Mn oxyhydroxide phases within O2 deficient intermediate waters and that this effect was most intense at approximately 5.0 Ma. This interpretation implies that waters with less than 2.0 mL/L O2 extended at least 1500 km beyond their present limits and is consistent with changes in benthic foraminifera assemblages. We further suggest this expanded Indian Ocean OMZ is related to regionally and/or globally increased biological productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relatively large number of nearby radio-quiet and thermally emitting isolated neutron stars (INSs) discovered in the ROSAT All-Sky Survey, dubbed the ""Magnificent Seven"", suggests that they belong to a formerly neglected major component of the overall INS population. So far, attempts to discover similar INSs beyond the solar vicinity failed to confirm any reliable candidate. The good positional accuracy and soft X-ray sensitivity of the EPIC cameras onboard the XMM-Newton satellite allow us to efficiently search for new thermally emitting INSs. We used the 2XMMp catalogue to select sources with no catalogued candidate counterparts and with X-ray spectra similar to those of the Magnificent Seven, but seen at greater distances and thus undergoing higher interstellar absorptions. Identifications in more than 170 astronomical catalogues and visual screening allowed us to select fewer than 30 good INS candidates. In order to rule out alternative identifications, we obtained deep ESO-VLT and SOAR optical imaging for the X-ray brightest candidates. We report here on the optical follow-up results of our search and discuss the possible nature of 8 of our candidates. A high X-ray-to-optical flux ratio together with a stable flux and soft X-ray spectrum make the brightest source of our sample, 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The X-ray source 2XMM J010642.3+005032 has no evident optical counterpart and should be further investigated. The remaining X-ray sources are most probably identified with cataclysmic variables and active galactic nuclei, as inferred from the colours and flux ratios of their likely optical counterparts. Beyond the finding of new thermally emitting INSs, our study aims at constraining the space density of this Galactic population at great distances and at determining whether their apparently high density is a local anomaly or not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, X-ray observations have revealed the existence of several classes of isolated neutron stars (INSs) which are radio-quiet or exhibit radio emission with properties much at variance with those of ordinary radio pulsars. The identification of new sources is crucial in order to understand the relations among the different classes and to compare observational constraints with theoretical expectations. A recent analysis of the 2XMMp catalogue provided fewer than 30 new thermally emitting INS candidates. Among these, the source 2XMM J104608.7-594306 appears particularly interesting because of the softness of its X-ray spectrum, kT = 117 +/- 14 eV and N(H) = (3.5 +/- 1.1) x 10(21) cm(-2) (3 sigma), and of the present upper limits in the optical, m(B) greater than or similar to 26, m(V) greater than or similar to 25.5 and m(R) greater than or similar to 25 (98.76% confidence level), which imply a logarithmic X-ray-to-optical flux ratio log(F(X)/F(V)) greater than or similar to 3.1, corrected for absorption. We present the X-ray and optical properties of 2XMM J104608.7-594306 and discuss its nature in the light of two possible scenarios invoked to explain the X-ray thermal emission from INSs: the release of residual heat in a cooling neutron star, as in the seven radio-quiet ROSAT-discovered INSs, and accretion from the interstellar medium. We find that the present observational picture of 2XMM J104608.7-594306 is consistent with a distant cooling INS with properties in agreement with the most up-to-date expectations of population synthesis models: it is fainter, hotter and more absorbed than the seven ROSAT sources and possibly located in the Carina Nebula, a region likely to harbour unidentified cooling neutron stars. The accretion scenario, although not entirely ruled out by observations, would require a very slow (similar to 10 km s(-1)) INS accreting at the Bondi-Hoyle rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Settling particles were collected using sediment traps deployed along three transects in the Lacaze-Duthiers and Cap de Creus canyons and the adjacent southern open slope from October 2005 to October 2006. The settling material was analyzed to obtain total mass fluxes and main constituent contents (organic matter, opal, calcium carbonate, and siliciclastics). Cascades of dense shelf water from the continental shelf edge to the lower continental slope occurred from January to March 2006. They were traced through strong negative near-bottom temperature anomalies and increased current speeds, and generated two intense pulses of mass fluxes in January and March 2006. This oceanographic phenomenon appeared as the major physical forcing of settling particles at almost all stations, and caused both high seasonal variability in mass fluxes and important qualitative changes in settling material. Fluxes during the dense shelf water cascading (DSWC) event ranged from 90.1 g m(-2) d(-1) at the middle Cap de Creus canyon (1000 m) to 3.2 g m(-2) d(-1) at the canyon mouth (1900 m). Fractions of organic matter, opal and calcium carbonate components increased seaward, thus diminishing the siliciclastic fraction. Temporal variability of the major components was larger in the canyon mouth and open slope sites, due to the mixed impact of dense shelf water cascading processes and the pelagic biological production. Results indicate that the cascading event remobilized and homogenized large amounts of material down canyon and southwardly along the continental slope contributing to a better understanding of the off-shelf particle transport and the internal dynamics of DSWC events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground state thermal neutron cross section and the resonance integral for the (165)Ho(n, gamma)(166)Ho reaction in thermal and 1/E regions, respectively, of a thermal reactor neutron spectrum have been measured experimentally by activation technique. The reaction product, (166)Ho in the ground state, is gaining considerable importance as a therapeutic radionuclide and precisely measured data of the reaction are of significance from the fundamental point of view as well as for application. In this work, the spectrographically pure holmium oxide (Ho(2)O(3)) powder samples were irradiated with and without cadmium covers at the IEA-RI reactor (IPEN, Sao Paulo), Brazil. The deviation of the neutron spectrum shape from 1/E law was measured by co-irradiating Co, Zn, Zr and Au activation detectors with thermal and epithermal neutrons followed by regression and iterative procedures. The magnitudes of the discrepancies that can occur in measurements made with the ideal 1/E law considerations in the epithermal range were studied. The measured thermal neutron cross section at the Maxwellian averaged thermal energy of 0.0253 eV is 59.0 +/- 2.1 b and for the resonance integral 657 +/- 36b. The results are measured with good precision and indicated a consistency trend to resolve the discrepant status of the literature data. The results are compared with the values in main libraries such as ENDF/B-VII, JEF-2.2 and JENDL-3.2, and with other measurements in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured polycyclic aromatic hydrocarbons (PAHs) in bulk precipitation in the Fortaleza metropolitan area, Ceara, Brazil, for the first time. Because little information is available concerning PAHs in tropical climatic regions, we assessed their spatial distribution and possible sources and the influence of urban activities on the depositional fluxes of PAHs in bulk precipitation. The concentrations of individual and total PAHs (Sigma(PAHs)) in bulk precipitation ranged from undetectable to 133.9 ng.L-1 and from 202.6 to 674.8 ng.L-1, respectively. The plume of highest concentrations was most intense in a zone with heavy automobile traffic and favorable topography for the concentration of emitted pollutants. The depositional fluxes of PAHs in bulk precipitation calculated in this study (undetectable to 0.87 mu g.m(-2).month(-1)) are 4 to 27 times smaller than those reported from tourist sites and industrial and urban areas in the Northern Hemisphere. Diagnostic ratio analyses of PAH samples showed that the major source of emissions is gasoline exhaust, with a small percentage originating from diesel fuel. Contributions from coal and wood combustion were also found. Major economic activities appear to contribute to pollutant emissions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The depth-dependent attenuation of the secondary cosmic-ray particle flux due to snow cover and its effects on production rates of cosmogenic nuclides constitutes a potential source of uncertainty for studies conducted in regions characterized by frequent seasonal snow burial. Recent experimental and numerical modelling studies have yielded new constraints on the effect of hydrogen-rich media on the production rates of cosmogenic nuclides by low- and high-energy neutrons (<10(-3) MeV and >10(2) MeV, respectively). Here we present long-term neutron-detector monitoring data from a natural setting that we use to quantify the effect of snow cover on the attenuation of fast neutrons (0.1-10 MeV), which are responsible for the production of Ne-21 from Mg and Cl-36 from K. We use data measured between July 2001 and May 2008 at seven stations located throughout the Ecrins-Pelvoux massif (French Western Alps) and its surroundings, at elevations ranging from 200 to 2500 m a.s.l. From the cosmic-ray fluxes recorded during summer, when snow is absent, we infer an apparent attenuation length of 148 g cm(-2) in the atmosphere at a latitude of similar to 45 degrees N and for altitudes ranging from similar to 200 to 2500 m a.s.l. Using snow water-equivalent (SWE) values obtained through snow-coring campaigns that overlap in time the neutron monitoring for five stations, we show that fast neutrons are much more strongly attenuated in snow than predicted by a conventional mass-shielding formulation and the attenuation length estimated in the atmosphere. We suggest that such strong attenuation results from boundary effects at the atmosphere/snow interface induced by the high efficiency of water as a neutron moderator. Finally, we propose an empirical model that allows calculating snow-shielding correction factors as a function of SWE for studies using Ne-21 and Cl-36 analyses in Mg- and K-rich minerals, respectively. This empirical model is of interest for studies with a focus on cosmic-ray exposure dating, particularly if the target rocks are made up of mafic to ultramafic units where seasonal snow-cover is a common phenomenon.