948 resultados para indolocarbazoles, organic electronics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The development of new electroluminescence polymers for specific colour tuning in Polymer Light Emitting Devices (PLEDs) is currently one of the most important fields for organic electronics. This work reports a synthesis of a new electroluminescent polymer and the concomitant test as PLED emissive layer. The polymer, synthesised from fluorene, is poly(9,9`-n-dihexil-2,7-fluorenodiilvinylene-alt-2,5thiophene) or PFT The luminescence shows large bands with maxima around 480 nm in absorption and 560 nm in emission. The device was made in a three layer structure, with PEDOT:PSS as hole transport layer, PFT as emissive layer and butyl-PBD as electron transport layer. The electroluminescence spectrum shows a strong band peaked at 540 nm. For an applied voltage of 12 Volt, the brightness at normal angle of viewing is near 10 cd/m(2) and the luminous efficiency is of 0.01 lm/W. A discussion about carrier transport and the electroluminescence properties is made.
Resumo:
Light-emitting electrochemical cells (LECs) made of electroluminescent polymers were studied by d.c. and transient current-voltage and luminance-voltage measurements to elucidate the operation mechanisms of this kind of device. The time and external voltage necessary to form electrical double layers (EDLs) at the electrode interfaces could be determined from the results. In the low-and intermediate-voltage ranges (below 1.1 V), the ionic transport and the electronic diffusion dominate the current, being the device operation better described by an electrodynamic model. For higher voltages, electrochemical doping occurs, giving rise to the formation of a p-i-n junction, according to an electrochemical doping model. Copyright (C) EPLA, 2012
Resumo:
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.
Resumo:
The synthesis and structural characterization of a europium complexed fluorene-bipyridine copolymer are described. A level of ion insertion of 80% in molar basis was achieved, and theoretical calculations showed that it required a twist of 179 degrees (49 kJ) between the pyridine units. Spectroscopy data showed that no electronic coupling between the main backbone and the complexation sites had occurred, but these hindered the interchain aggregation observed in the non complexed polymer. Preliminary electroluminescence studies showed that the EL and PL spectra are consistent, and that the ion had a trapping effect in the charge transport. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Frequency-dependent electroluminescence and electric current response spectroscopy were applied to polymeric light-emitting electrochemical cells in order to obtain information about the operation mechanism regimes of such devices. Three clearly distinct frequency regimes could be identified: a dielectric regime at high frequencies; an ionic transport regime, characterized by ionic drift and electronic diffusion; and an electrolytic regime, characterized by electronic injection from the electrodes and electrochemical doping of the conjugated polymer. From the analysis of the results, it was possible to evaluate parameters like the diffusion speed of electronic charge carriers in the active layer and the voltage drop necessary for operation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752438]
Resumo:
This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.
Resumo:
The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.
Resumo:
Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current−voltage characteristics by a space-charge-limited current transport with a field dependent mobility.
Resumo:
The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.
Resumo:
The aim of my dissertation is to provide new knowledge and applications of microfluidics in a variety of problems, from materials science, devices, and biomedicine, where the control on the fluid dynamics and the local concentration of the solutions containing the relevant molecules (either materials, precursors, or biomolecules) is crucial. The control of interfacial phenomena occurring in solutions at dierent length scales is compelling in nanotechnology for devising new sensors, molecular electronics devices, memories. Microfluidic devices were fabricated and integrated with organic electronics devices. The transduction involves the species in the solution which infills the transistor channel and confined by the microfluidic device. This device measures what happens on the surface, at few nanometers from the semiconductor channel. Soft-lithography was adopted to fabricate platinum electrodes, starting from platinum carbonyl precursor. I proposed a simple method to assemble these nanostructures in periodic arrays of microstripes, and form conductive electrodes with characteristic dimension of 600 nm. The conductivity of these sub-microwires is compared with the values reported in literature and bulk platinum. The process is suitable for fabricating thin conductive patterns for electronic devices or electrochemical cells, where the periodicity of the conductive pattern is comparable with the diusion length of the molecules in solution. The ordering induced among artificial nanostructures is of particular interest in science. I show that large building blocks, like carbon nanotubes or core-shell nanoparticles, can be ordered and self-organised on a surface in patterns due to capillary forces. The eective probability of inducing order with microfluidic flow is modeled with finite element calculation on the real geometry of the microcapillaries, in soft-lithographic process. The oligomerization of A40 peptide in microconfined environment represents a new investigation of the extensively studied peptide aggregation. The added value of the approach I devised is the precise control on the local concentration of peptides together with the possibility to mimick cellular crowding. Four populations of oligomers where distinguished, with diameters ranging from 15 to 200 nm. These aggregates could not be addresses separately in fluorescence. The statistical analysis on the atomic force microscopy images together with a model of growth reveal new insights on the kinetics of amyloidogenesis as well as allows me to identify the minimum stable nucleus size. This is an important result owing to its implications in the understanding and early diagnosis and therapy of the Alzheimer’s disease
Resumo:
Thiophene oligomers (OTs) and polymers (PTs) are currently attracting remarkable attention as organic materials showing semiconducting, fluorescent, nonlinear optical and liquid crystalline properties. All these properties can be fine-tuned through minor structural modifications. As a consequence, thiophene oligomers and polymers are among the most investigated compounds for applications in organic electronics, optoelectronics and thin film devices such as field effect transistors (FETs), light emitting diodes (LEDs) and photovoltaic devices (PVDs). Our research aims to explore the self-assembly features and the optical, electrical and photovoltaic properties of a class of thiophene based materials so far scarcely investigated, namely that of oligo- and polythiophenes head-to-head substituted with alkyl or S-alkyl chains. In particular, we synthesized these compounds in short reaction times, high yields, high purity and environmentally friendly procedures taking advantage of ultrasound (US) and microwave (MW) enabling technologies in Suzuki-Miyaura cross-couplings.
Resumo:
Graphene and graphenic derivatives have rapidly emerged as an extremely promising system for electronic, optical, thermal, and electromechanical applications. Several approaches have been developed to produce these materials (i.e. scotch tape, CVD, chemical and solvent exfoliation). In this work we report a chemical approach to produce graphene by reducing graphene oxide (GO) via thermal or electrical methods. A morphological and electrical characterization of these systems has been performed using different techniques such as SPM, SEM, TEM, Raman and XPS. Moreover, we studied the interaction between graphene derivates and organic molecules focusing on the following aspects: - improvement of optical contrast of graphene on different substrates for rapid monolayer identification1 - supramolecular interaction with organic molecules (i.e. thiophene, pyrene etc.)4 - covalent functionalization with optically active molecules2 - preparation and characterization of organic/graphene Field Effect Transistors3-5 Graphene chemistry can potentially allow seamless integration of graphene technology in organic electronics devices to improve device performance and develop new applications for graphene-based materials. [1] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2009, 131, 15576. [2] M. Melucci, E. Treossi, L. Ortolani, G. Giambastiani, V. Morandi, P. Klar, C. Casiraghi, P. Samorì, and V. Palermo, J. Mater. Chem., 2010, 20, 9052. [3] J.M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G.P. Veronese, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2010, 132, 14130. [4] A. Liscio, G.P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì and V. Palermo, J. Mater. Chem., 2011, 21, 2924. [5] J.M. Mativetsky, A. Liscio, E. Treossi, E. Orgiu, A. Zanelli, P. Samorì , V. Palermo, J. Am. Chem. Soc., 2011, 133, 14320
Resumo:
Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.