989 resultados para in vitro culture establishment
Resumo:
The objective of the present study was to examine the effect of green tea polyphenols (GTPs) supplementation during in vitro maturation, in vitro fertilization, and in vitro culture on the developmental competence of bovine oocytes. Cumulus-oocyte complexes aspirated from the ovaries were matured in vitro (38.5ºC for 24 h) and fertilized (38.5ºC for 15-18 h) and embryos were cultured (38.5ºC for 192 h) in a defined conditioned medium with or without GTPs supplementation. The GTPs used in the present study contained 99% catechin derivatives, with the major components being 50% (-)-epigallocatechin gallate, 22% (-)-epicatechin gallate, 18% (-)-epigallocatechin, and 10% (-)-epicatechin. Four replicate trials were done for each type of experiment. GTPs supplementation (15 µM) of the maturation medium led to a significant increase in the rate of blastocyst formation (34.0 vs 21.4%, P < 0.05). However, the rate of blastocyst formation was not improved when higher GTPs concentrations (20 or 25 µM) were added to the in vitro maturation medium. During in vitro fertilization, supplementation with higher GTPs concentrations (20 or 25 µM) significantly reduced the rate of blastocyst formation (P < 0.05). Supplementation of the culture medium with 15 µM GTPs improved the rate of blastocyst formation, while higher GTPs concentrations (25 µM) significantly reduced embryo development (P < 0.05). In conclusion, these results demonstrate that supplementation with GTPs at low concentration (15 µM) during in vitro maturation and in vitro culture improved the developmental competence of bovine oocytes.
Resumo:
The objective of this study was to determine the effects of GDF-9, IGF-I, and GH alone or combined on preantral follicle survival, activation and development after 1 and 7 days of in vitro culture. Either fresh (non-cultured) or cultured ovarian tissue was processed for histological and fluorescence analysis. For all media tested, the percent of normal follicles was greater when compared to minimum essential medium supplemented (MEM+) alone, except when ovarian tissue was cultured with GDF-9/IGF-I or GDF-9/GH (P < 0.05). Fluorescence analysis showed that the percent of viable follicles after 7 days of culture was similar for non-cultured tissue and for all treatments tested. The percent of primordial follicles was reduced (P < 0.05) and there was a significant and concomitant increase in the percent of intermediate and primary follicles in all treatments tested after 7 days of culture when compared to non-cultured tissue. After 7 days of culture, the highest percent of intermediate follicles was observed with IGF-I/GH (61.3%), and the highest percent of primary follicles was achieved with IGF-I (57.7%). After 7 days of culture in MEM+ containing GDF-9, IGF-I and GH alone or in all associations, a significant increase in follicular diameter was observed when compared to MEM+ alone and non-cultured tissue. In conclusion, GDF-9, IGF-I and GH alone or in combination maintain preantral follicle survival and promote primordial follicle activation. Nevertheless, the data showed that IGF-I/GH and IGF-I alone are efficient in promoting the transition from primordial to intermediate follicles and from intermediate to primary follicles, respectively.
Resumo:
Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.
Resumo:
Background Somatic embryogenesis (SE) in plants is a process by which embryos are generated directly from somatic cells, rather than from the fused products of male and female gametes. Despite the detailed expression analysis of several somatic-to-embryonic marker genes, a comprehensive understanding of SE at a molecular level is still lacking. The present study was designed to generate high resolution transcriptome datasets for early SE providing the way for future research to understand the underlying molecular mechanisms that regulate this process. We sequenced Arabidopsis thaliana somatic embryos collected from three distinct developmental time-points (5, 10 and 15 d after in vitro culture) using the Illumina HiSeq 2000 platform. Results This study yielded a total of 426,001,826 sequence reads mapped to 26,520 genes in the A. thaliana reference genome. Analysis of embryonic cultures after 5 and 10 d showed differential expression of 1,195 genes; these included 778 genes that were more highly expressed after 5 d as compared to 10 d. Moreover, 1,718 genes were differentially expressed in embryonic cultures between 10 and 15 d. Our data also showed at least eight different expression patterns during early SE; the majority of genes are transcriptionally more active in embryos after 5 d. Comparison of transcriptomes derived from somatic embryos and leaf tissues revealed that at least 4,951 genes are transcriptionally more active in embryos than in the leaf; increased expression of genes involved in DNA cytosine methylation and histone deacetylation were noted in embryogenic tissues. In silico expression analysis based on microarray data found that approximately 5% of these genes are transcriptionally more active in somatic embryos than in actively dividing callus and non-dividing leaf tissues. Moreover, this identified 49 genes expressed at a higher level in somatic embryos than in other tissues. This included several genes with unknown function, as well as others related to oxidative and osmotic stress, and auxin signalling. Conclusions The transcriptome information provided here will form the foundation for future research on genetic and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; the genes more highly expressed in somatic embryos than in vegetative tissues can be considered as potential candidates to validate these networks.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Avaliou-se o desenvolvimento de folículos pré-antrais ovinos após o cultivo in vitro do córtex ovariano em várias concentrações de ácido 3-indol acético (IAA). O córtex ovariano foi dividido em fragmentos de aproximadamente 3×3mm. Um fragmento foi imediatamente fixado em Bouin (controle - dia 0) e os demais destinados ao cultivo por dois ou seis dias em meio essencial mínimo (MEM+) acrescido de 10, 40, 100, 500 ou 1000ng/ml de IAA. Após o cultivo in vitro, não houve variação entre folículos dos tratamentos e folículos-controle, exceto nos suplementados com 40ng/ml de IAA. Nestes observaram-se redução de folículos primordiais e aumento de folículos em desenvolvimento (P<0,05). em relação aos folículos do grupo-controle, houve redução de pré-antrais normais no cultivo de seis dias (P<0,05). Após dois dias de cultivo, a redução foi observada somente nos folículos suplementados com 500 ou 1000ng/ml de IAA. Folículos pré-antrais ovinos podem ser ativados in vitro com sucesso após o cultivo em MEM+ suplementado com 40ng/ml de IAA.
Resumo:
A cultura in vitro é uma técnica controlada que proporciona estudar os processos nutricionais, fisiológicos e bioquímicos de embriões em vários estádios de desenvolvimento. O objetivo foi avaliar a relação entre estádio de desenvolvimento do fruto e concentração de sacarose, no meio, durante o desenvolvimento, in vitro, de embriões de cafeeiro. Frutos de Coffea arabica cv. Acaiá foram colhidos, lavados, desinfestados, seus embriões excisados e inoculados em meio de cultivo MS, com pH ajustado para 5,8. Os tratamentos consistiram em combinação de concentrações de sacarose (0, 15, 30, 60, 90 e 120 g L-1) e estádios de desenvolvimento do fruto (chumbinho, chumbo, verde, verde-cana, cereja e passa). Após a inoculação, os embriões foram incubados em sala de crescimento, a 27 ± 1 ºC, fotoperíodo de 16 horas e 35 µ mol m-2 s-1 de intensidade luminosa. O delineamento experimental utilizado foi inteiramente casualizado, em esquema fatorial 6 x 6, com seis repetições constituídas por quatro tubos cada. Após 60 dias de desenvolvimento, as plântulas foram avaliadas com base no comprimento da parte aérea, massa de matéria fresca total da parte aérea e das raízes. Observaram-se influências das concentrações de sacarose e dos estádios de desenvolvimento do fruto no crescimento e desenvolvimento das plântulas. Resultados satisfatórios para todas as variáveis estudadas foram obtidos com embriões excisados no estádio verde, inoculados em meio de cultivo suplementado com 51 a 70 g L-1 de sacarose.
Resumo:
The mechanisms that regulate the gradual exit of ovarian follicles from the non-growing, primordial pool are very poorly understood. The objective of this study was to evaluate the effects of adding indole acetic acid (IAA), epidermal growth factor (EGF) and follicle stimulating hormone (FSH) to the media for in vitro culture of ovine ovarian fragments and determine their effects on growth activation and viability of preantral follicles. The ovarian cortex was divided into small fragments; one fragment was immediately fixed in Bouin (control). The other fragments were cultured for 2 or 6 days in culture plates with: minimum essential medium (MEM) supplemented with insulin-transferrin-selenium (ITS), pyruvate, glutamine, hypoxantine, bovine serum albumine and antibiotics (MEM+); MEM+ plus IAA (40 ng/mL); MEM+ plus EGF (100 ng/mL); MEM+ plus FSH (100 ng/mL); MEM+ plus IAA + EGF; MEM+ plus IAA + FSH; MEM+ plus EGF + FSH; or MEM+ plus IAA + EGF + FSH. After 2 or 6 days of culture in each treatment, the pieces of ovarian cortex were fixed in Bonin for histological examination. Follicles were classified as primordial or developing (primary and secondary) follicles. Compared to the control, in all media tested, the percentages of primordial follicles were reduced (P < 0.05) and the percentages of developing follicles were increased (P < 0.05) after 2 or 6 days of culture. Furthermore, culture of ovarian cortex for 6 days reduced the percentages of healthy, viable follicles when compared with the control (P < 0.05), except for cultures supplemented with IAA + EGF and EGF + FSH. In conclusion, the addition of IAA and EGF or EGF and FSH to the culture media were the most effective treatments to sustain the health and viability of activated ovine primordial follicles during in vitro culture. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work was to evaluate the effects of aluminum on the growth of Eucalyptus shoots cultivated in vitro through nutrient and total soluble protein content. The trial had a totally randomized design with four treatments and four replicates. The treatments were: 0.0; 0.25; 0.5 and 1.0 mM of AlCl 3.6H 2O. Shoots without roots of a Eucalyptus grandis x E urophylla clone were used for the in vitro culture. Evaluations were made on the 4th, 8th, 12th, 16th, 20th, 24th and 28th day of culture. The Al addition to the culture media reduced mainly Ca, P and K availability and absorptions by the shoots. The cellular metabolism was affected, conducted to morphological alterations in shoots (browning, mass calluses formation and shoots not friable), dry matter increased and a decreased in total protein soluble.
Resumo:
The objective of this study is to use different in vitro culture systems of preantral follicles from Nelore breed bovine fetuses in the last gestation quarter. The evaluation of treatments considered the time of growth of isolated follicles. Preantral follicles were mechanically isolated and submitted to the individual culture, for 9 days, in media no supplemented or supplemented with fetal calf serum (FCS), bovine serum albumin (BSA) or synthetic defined supplement substitute of serum KnockoutSR (KNO). We have also evaluated the effects of collagen gel or fetal calf fibroblast monolayer as substratum for in vitro cultures. The increase on the follicular diameter was followed in the first day (0 h), at the 72 h, 144 h and 216 h. Considering cultures of isolated follicles, the results have shown that the association between media supplemented with FCS and collagen gel was significantly more efficient on the increase of the follicular diameter than other treatments. It is not still established a system of appropriate cultivation that sustains the differentiation and multiplication of the granular cells and that maintains the contact of the same ones with the oocyte to provide molecules and factors that supply the metabolic demand. We also understand that our results also represent another promising step on the search for the ultimate system of in vitro culture of preantral follicles from bovines.