974 resultados para in situ hydrothermal synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile strategy for the in situ synthesis of terbium complex-silica nanocomposites is described. The resultant spherical nanocomposites possess good monodispersity and exhibit luminescent properties of terbium complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indium hydroxide, In(OH)(3), nano-microstructures with two kinds of morphology, nanorod bundles (around 500 nm in length and 200 nm in diameter) and caddice spherelike agglomerates (around 750 - 1000 nm in diameter), were successfully prepared by the cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion-mediated hydrothermal process. Calcination of the In(OH)(3) crystals with different morphologies (nanorod bundles and spheres) at 600 degrees C in air yielded In2O3 crystals with the same morphology. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The pH values of microemulsion play an important role in the morphological control of the as-formed In(OH)(3) nano-microstructures from the hydrothermal process. The formation mechanisms for the In( OH) 3 nano- microstructures have been proposed on an aggregation mechanism. In2O3 nanorod bundles and spheres show a similar blue emission peaking around 416 and 439 nm under the 383-nm UV excitation, which is mainly attributed to the oxygen vacancies in the In2O3 nano-microstructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypropylene/montmorillonite (PP/MMT) nanocomposites were prepared by in-situ polymerization using a MMT/MgCl2/TiCl4-EB Ziegler-Natta catalyst activated by trietbylaluminum (TEA). The enlarged layer spacing of MMT was confirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components. X-ray photoelectron spectrometry (XPS) analysis proved that TiCl4 was mainly supported on MgCl2 instead of on the surface of MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXD patterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terbium complexes with benzoic acid and its derivatives o-hydroxybenzoic acid and p-hydroxybenzoic acid were in situ synthesized in sol-gel derived silica matrix via a two-step sol-gel process. The formation process of the complex was characterized by fluorescence spectra, absorption spectra and IR spectra. The gels that contain in situ synthesized complexes exhibit the characteristic emission bands of terbium ion. The fluorescence lifetimes of Tb3+ in the silica gels are longer than those in the pure complexes and in the solutions that contain the corresponding complexes. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A process for in situ synthesis of terbium complex with salicylic acid by a two-step sol-gel method in silica matrix has been proposed. The luminescence properties of the silica gels codoped with terbium and salicylic acid have also been discussed with respect to that of the gel doped with terbium and that of pure terbium complex with salicylic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly crystalline zeolite Beta coatings in a range of Si/Al ratios of 12-23 were synthesized on a surface-modified molybdenum substrate by hydrothermal synthesis. The average thickness of the coatings was ca. 2 mu m corresponding to a coverage of 2.5 gm(-2). The coatings were obtained from a viscous Na, K, and TEAOH containing aluminosilicate precursor mixture with silica sol as reactive silicon source. A mechanism for the in situ growth of zeolite Beta coatings is proposed. According to this mechanism, the deposition of an amorphous gel layer on the substrate surface in the initial stage of the synthesis is an important step for the crystallization of continuous zeolite Beta coatings. The heating rate of the precursor mixture and the synthesis temperature were optimized to control the level of supersaturation and to stimulate the initial formation of a gel layer. At a Si/Al ratio of 23, fast heating and a temperature of 150 degrees C are required to obtain high coverage, while at a Si/Al ratio of 15, hydrothermal synthesis has to be performed with a slow initial heating rate at 140 degrees C. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the hydrothermal synthesis of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications has been developed. Before the hydrothermal synthesis, the surface of the substrate was modified by an etching procedure that increases the roughness at the nanoscale level without completely eliminating the surface lay structure. Then, thin films of Al2O3 (170 nm) and TiO2 (50 nm) were successively deposited by atomic layer deposition (ALD) on the substrate. The internal Al2O3 film protects the Mo substrate from oxidation up to 550 degrees C in an oxidative environment. The high wettability of the external TiO2 film after UV irradiation increases zeolite nucleation on its surface. The role of the metal precursor (TiCl4 vs TiI4), deposition temperature (300 vs 500 degrees C), and film thickness (50 vs 100 nm) was investigated to obtain titania films with the slowest decay in the superhydrophilic behavior after UV irradiation. Zeolite Beta coatings with a Si/Al ratio of 23 were grown at 140 degrees C for 48 It. After ion exchange with a 10(-4) M cobalt acetate solution, the activity of the coatings was determined in the ammoxidation of ethylene to acetonitrile in a microstructured reactor. A maximum reaction rate of 220 mu mol C2H3N g(-1) s(-1) was obtained at 500 degrees C, with 42% carbon selectivity to acetonitrile. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cu/ZnO/Al2O3 commercial catalyst for methanol synthesis from syngas was investigated under operational conditions. HERFD XAS and EXAFS data were recorded under different reaction gas mixtures, temperatures, and pressures. Activation of the catalyst precursor occurred via a Cu+ intermediate. The active catalyst predominantly consists of metallic Cu and ZnO. Methanol production only starts when all accessible Cu is reduced. The structure of the active catalyst did not change with temperature or pressure even though the methanol yield changed strongly. Formation of a carbon-containing layer on top of the catalyst surface was detected by TPD, which was correlated with a several-hour induction period in the methanol production after the catalyst reduction.