769 resultados para importance performance analysis
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M
Resumo:
Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.
Resumo:
A parallel matrix multiplication algorithm is presented, and studies of its performance and estimation are discussed. The algorithm is implemented on a network of transputers connected in a ring topology. An efficient scheme for partitioning the input matrices is introduced which enables overlapping computation with communication. This makes the algorithm achieve near-ideal speed-up for reasonably large matrices. Analytical expressions for the execution time of the algorithm have been derived by analysing its computation and communication characteristics. These expressions are validated by comparing the theoretical results of the performance with the experimental values obtained on a four-transputer network for both square and irregular matrices. The analytical model is also used to estimate the performance of the algorithm for a varying number of transputers and varying problem sizes. Although the algorithm is implemented on transputers, the methodology and the partitioning scheme presented in this paper are quite general and can be implemented on other processors which have the capability of overlapping computation with communication. The equations for performance prediction can also be extended to other multiprocessor systems.
Resumo:
The present paper aims at studying the performance characteristics of a subspace based algorithm for source localization in shallow water such as coastal water. Specifically, we study the performance of Multi Image Subspace Algorithm (MISA). Through first-order perturbation analysis and computer simulation it is shown that MISA is unbiased and statistically efficient. Further, we bring out the role of multipaths (or images) in reducing the error in the localization. It is shown that the presence of multipaths is found to improve the range and depth estimates. This may be attributed to the increased curvature of the wavefront caused by interference from many coherent multipaths.
Resumo:
SAW matched filter is commonly used in spread spectrum communication receivers in order to maximize the SNR prior to detection, At times the receiver would be a mobile one while the signal is processed at the IF level, In that case frequency deviations due to Doppler shift or temperature dependence of the acoustic medium used for SAW device would, severely effect it's performance, The impact of these errors on the receiver performance is analyzed on a generalised basis.
Resumo:
The statistical performance analysis of ESPRIT, root-MUSIC, minimum-norm methods for direction estimation, due to finite data perturbations, using the modified spatially smoothed covariance matrix, is developed. Expressions for the mean-squared error in the direction estimates are derived based on a common framework. Based on the analysis, the use of the modified smoothed covariance matrix improves the performance of the methods when the sources are fully correlated. Also, the performance is better even when the number of subarrays is large unlike in the case of the conventionally smoothed covariance matrix. However, the performance for uncorrelated sources deteriorates due to an artificial correlation introduced by the modified smoothing. The theoretical expressions are validated using extensive simulations. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.
Resumo:
Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.
Resumo:
In this article we consider a finite queue with its arrivals controlled by the random early detection algorithm. This is one of the most prominent congestion avoidance schemes in the Internet routers. The aggregate arrival stream from the population of transmission control protocol sources is locally considered stationary renewal or Markov modulated Poisson process with general packet length distribution. We study the exact dynamics of this queue and provide the stability and the rates of convergence to the stationary distribution and obtain the packet loss probability and the waiting time distribution. Then we extend these results to a two traffic class case with each arrival stream renewal. However, computing the performance indices for this system becomes computationally prohibitive. Thus, in the latter half of the article, we approximate the dynamics of the average queue length process asymptotically via an ordinary differential equation. We estimate the error term via a diffusion approximation. We use these results to obtain approximate transient and stationary performance of the system. Finally, we provide some computational examples to show the accuracy of these approximations.
Resumo:
We derive the computational cutoff rate, R-o, for coherent trellis-coded modulation (TCM) schemes on independent indentically distributed (i.i.d.) Rayleigh fading channels with (K, L) generalized selection combining (GSC) diversity, which combines the K paths with the largest instantaneous signal-to-noise ratios (SNRs) among the L available diversity paths. The cutoff rate is shown to be a simple function of the moment generating function (MGF) of the SNR at the output of the (K, L) GSC receiver. We also derive the union bound on the bit error probability of TCM schemes with (K, L) GSC in the form of a simple, finite integral. The effectiveness of this bound is verified through simulations.
Resumo:
Fiber-optic CDMA technology is well suited for high speed local-area-networks (LANs) as it has good salient features. In this paper, we model the wavelength/time multiple-pulses-per-row (W/T MPR) FO-CDMA network channel, as a Z channel. We compare the performances of W/T MPR code with and without hard-limiter and show that significant performance improvement can be achieved by using hard-limiters in the receivers. In broadcast channels, MAI is the dominant source of noise. Hence the performance analysis is carried out considering only MAI and other receiver noises are neglected.
Resumo:
Throughput analysis of bulk TCP downloads in cases where all WLAN stations are associated at the same rate with the AP is available in the literature. In this paper,we extend the analysis to TCP uploads for the case of multirate associations. The approach is based on a two-dimensional semi- Markov model for the number of backlogged stations. Analytical results are in excellent agreement with simulations performed using QUALNET 4.5.
Resumo:
We consider a fluid queue in discrete time with random service rate. Such a queue has been used in several recent studies on wireless networks where the packets can be arbitrarily fragmented. We provide conditions on finiteness of moments of stationary delay, its Laplace-Stieltjes transform and various approximations under heavy traffic. Results are extended to the case where the wireless link can transmit in only a few slots during a frame.